Effect of the Vasodilator Therapy in Regurgitant Valvular Disease

SHIGETAKE SASAYAMA, M.D., AKIRA OHYAGI, M.D., JONG-DAE LEE, M.D.
HIROSHI NONOGI, M.D., TSUNETARO SAKURAI, M.D., AKIRA WAKABAYASHI, M.D.
MASATOSHI FUJITA, M.D., and CHUICHI KAWAI, M.D.

The hemodynamic response to afterload reduction by sodium nitroprusside was assessed in 5 patients with mitral regurgitation and in 7 with aortic regurgitation. The drug significantly lowered left ventricular systolic pressure, end-diastolic pressure and end-diastolic volume. In patients with mitral regurgitation, significant decreases in regurgitant volume (74 ± 10 to 44 ± 7 ml) and regurgitant fraction (60 ± 4 to 41 ± 5%) were associated with substantial increases in cardiac output (4.18 ± 1.18 to 5.43 ± 1.18 L/min) and forward stroke volume (49 ± 10 to 64 ± 9 ml). In patients with aortic regurgitation, vasodilator therapy was effective in increasing forward output only in 2 patients who had an initially elevated end-diastolic pressure which was reduced only to levels slightly above normal with nitroprusside. In patients with a lower level of end-diastolic pressure, further reduction in the filling pressure resulted in no benefit or rather a fall in forward stroke volume, despite a significant increase in pump function (ejection fraction being augmented from 55 ± 4 to 61 ± 5%).

Experiments in dogs confirmed that nitroprusside reduced the amount of mitral regurgitation by virtue of diminishing the regurgitant orifice size, as a result of the reduction in size of the left heart chamber. These observations also support the concept that it is ultimately important to maintain filling pressure at an optimal level during administration of a vasodilating agent, otherwise effects due to afterload reduction tend to be offset.

Recently the importance of vasodilator therapy for the treatment of cardiac failure has been emphasized by many investigators. The concept of clinical application of this therapy is based on the experimental findings that defined the inverse relationship between force and velocity or extent of muscle shortening at a constant muscle length. In the intact failing ventricle, it would be expected that ventricular ejection could be augmented by reducing the level of afterload, provided that the venous return is maintained. Vasodilator therapy with nitroprusside exerts significantly favorable effects in patients with mitral regurgitation. Mechanisms of the reduction of regurgitant volume have been postulated to be related to an increased competence of the mitral apparatus due to a decrease in left ventricular chamber size as well as to the decrease in the resistance to ejection of blood into the aorta. Recently, vasodilator therapy was also applied for the treatment of chronic aortic regurgitation

Key Words:
Mitral regurgitation
Aortic regurgitation
Nitroprusside
Left ventriculography
Left atrial function

The Third Division, Department of Internal Medicine, Kyoto University Hospital, Sakyo-ku, Kyoto 606 and *Otowa Hospital, Yamashina-ku, Kyoto 607, Japan
This project was supported by Scientific Research Grant No 457240 from the Ministry of Education, Science and Culture, Japan.

Japanese Circulation Journal Vol. 46, April 1982 433
<table>
<thead>
<tr>
<th>Pt</th>
<th>Age</th>
<th>Sex</th>
<th>Dx</th>
<th>HR (beat/min)</th>
<th>LVSP (mmHg)</th>
<th>LVEDP (mmHg)</th>
<th>CO (L/min)</th>
<th>FSV (ml/beat)</th>
<th>EDV (ml)</th>
<th>ESV (ml)</th>
<th>ESV (ml)</th>
<th>EF (%)</th>
<th>RV (ml)</th>
<th>RF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>NP</td>
<td>R</td>
<td>C</td>
<td>NP</td>
<td>C</td>
<td>NP</td>
<td>C</td>
<td>NP</td>
<td>C</td>
<td>NP</td>
</tr>
<tr>
<td>M.H.</td>
<td>37</td>
<td>F</td>
<td>RC</td>
<td>60</td>
<td>63</td>
<td>NSR</td>
<td>141</td>
<td>107</td>
<td>16</td>
<td>12</td>
<td>2.70</td>
<td>3.19</td>
<td>45</td>
<td>51</td>
</tr>
<tr>
<td>T.A.</td>
<td>64</td>
<td>M</td>
<td>RHD</td>
<td>92</td>
<td>88</td>
<td>AF</td>
<td>154</td>
<td>115</td>
<td>10</td>
<td>6</td>
<td>4.98</td>
<td>6.36</td>
<td>54</td>
<td>73</td>
</tr>
<tr>
<td>Y.O.</td>
<td>37</td>
<td>M</td>
<td>RHD</td>
<td>79</td>
<td>85</td>
<td>AF</td>
<td>127</td>
<td>115</td>
<td>31</td>
<td>24</td>
<td>2.79</td>
<td>5.03</td>
<td>35</td>
<td>59</td>
</tr>
<tr>
<td>S.N.</td>
<td>32</td>
<td>F</td>
<td>RC</td>
<td>100</td>
<td>100</td>
<td>NSR</td>
<td>157</td>
<td>133</td>
<td>11</td>
<td>7</td>
<td>7.99</td>
<td>9.00</td>
<td>80</td>
<td>90</td>
</tr>
<tr>
<td>H.W.</td>
<td>59</td>
<td>M</td>
<td>PMD/CAD</td>
<td>80</td>
<td>80</td>
<td>NSR</td>
<td>110</td>
<td>110</td>
<td>32</td>
<td>20</td>
<td>2.43</td>
<td>3.56</td>
<td>30</td>
<td>45</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td>82</td>
<td>83</td>
<td>138</td>
<td>116</td>
<td>20</td>
<td>14</td>
<td>4.18</td>
<td>5.43</td>
<td>49</td>
<td>64</td>
<td>199</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td></td>
<td></td>
<td>8</td>
<td>7</td>
<td>10</td>
<td>5</td>
<td>5</td>
<td>4</td>
<td>1.18</td>
<td>1.18</td>
<td>10</td>
<td>9</td>
<td>24</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td>NS</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.05</td>
<td><0.01</td>
<td><0.01</td>
<td>NS</td>
<td>NS</td>
<td><0.01</td>
</tr>
</tbody>
</table>

Patients with Aortic Regurgitation

<table>
<thead>
<tr>
<th>Pt</th>
<th>Age</th>
<th>Sex</th>
<th>Dx</th>
<th>HR (beat/min)</th>
<th>LVSP (mmHg)</th>
<th>LVEDP (mmHg)</th>
<th>CO (L/min)</th>
<th>FSV (ml/beat)</th>
<th>EDV (ml)</th>
<th>ESV (ml)</th>
<th>ESV (ml)</th>
<th>EF (%)</th>
<th>RV (ml)</th>
<th>RF (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td></td>
<td></td>
<td></td>
<td>C</td>
<td>NP</td>
<td>R</td>
<td>C</td>
<td>NP</td>
<td>C</td>
<td>NP</td>
<td>C</td>
<td>NP</td>
<td>C</td>
<td>NP</td>
</tr>
<tr>
<td>M.S.</td>
<td>48</td>
<td>M</td>
<td>Post IE</td>
<td>78</td>
<td>71</td>
<td>NSR</td>
<td>166</td>
<td>107</td>
<td>36</td>
<td>17</td>
<td>3.46</td>
<td>4.06</td>
<td>44</td>
<td>58</td>
</tr>
<tr>
<td>M.H.</td>
<td>45</td>
<td>M</td>
<td>RHD</td>
<td>62</td>
<td>65</td>
<td>NSR</td>
<td>174</td>
<td>108</td>
<td>13</td>
<td>9</td>
<td>5.40</td>
<td>5.72</td>
<td>87</td>
<td>88</td>
</tr>
<tr>
<td>H.I.</td>
<td>27</td>
<td>M</td>
<td>RHD</td>
<td>75</td>
<td>78</td>
<td>NSR</td>
<td>134</td>
<td>104</td>
<td>20</td>
<td>9</td>
<td>6.85</td>
<td>6.49</td>
<td>91</td>
<td>83</td>
</tr>
<tr>
<td>K.Y.</td>
<td>62</td>
<td>F</td>
<td>HT</td>
<td>69</td>
<td>85</td>
<td>NSR</td>
<td>188</td>
<td>118</td>
<td>13</td>
<td>8</td>
<td>5.40</td>
<td>6.94</td>
<td>78</td>
<td>82</td>
</tr>
<tr>
<td>K.S.</td>
<td>56</td>
<td>F</td>
<td>RHD</td>
<td>60</td>
<td>68</td>
<td>NSR</td>
<td>182</td>
<td>115</td>
<td>27</td>
<td>16</td>
<td>4.09</td>
<td>5.55</td>
<td>68</td>
<td>82</td>
</tr>
<tr>
<td>K.K.</td>
<td>38</td>
<td>M</td>
<td>ARD</td>
<td>75</td>
<td>94</td>
<td>NSR</td>
<td>154</td>
<td>129</td>
<td>11</td>
<td>7</td>
<td>6.30</td>
<td>6.20</td>
<td>84</td>
<td>66</td>
</tr>
<tr>
<td>M.U.</td>
<td>26</td>
<td>M</td>
<td>RHD</td>
<td>71</td>
<td>90</td>
<td>NSR</td>
<td>128</td>
<td>110</td>
<td>10</td>
<td>5</td>
<td>9.40</td>
<td>8.24</td>
<td>91</td>
<td>91</td>
</tr>
<tr>
<td>Mean</td>
<td></td>
<td></td>
<td></td>
<td>70</td>
<td>79</td>
<td>161</td>
<td>113</td>
<td>19</td>
<td>10</td>
<td>5.84</td>
<td>6.17</td>
<td>82</td>
<td>79</td>
<td>264</td>
</tr>
<tr>
<td>SEM</td>
<td></td>
<td></td>
<td></td>
<td>3</td>
<td>5</td>
<td>9</td>
<td>3</td>
<td>5</td>
<td>2</td>
<td>0.80</td>
<td>0.53</td>
<td>10</td>
<td>5</td>
<td>32</td>
</tr>
<tr>
<td>p</td>
<td></td>
<td></td>
<td></td>
<td>=0.05</td>
<td><0.01</td>
<td><0.01</td>
<td>NS</td>
<td>NS</td>
<td><0.05</td>
<td><0.01</td>
<td>NS</td>
<td><0.05</td>
<td>NS</td>
<td>NS</td>
</tr>
</tbody>
</table>

Abbreviations: Pt = patient, Dx = diagnosis, HR = heart rate, LVSP = left ventricular peak systolic pressure, CO = cardiac output, FSV = forward stroke volume, EDV = end-diastolic volume, ESV = end-systolic volume, TSV = total stroke volume, EF = ejection fraction, RV = regurgitant volume, RF = regurgitant fraction, C = control, NP = with nitroprusside, RC = rupture of chordae tendineae, RHD = rheumatic heart disease, PMD = papillary muscle dysfunction, CAD = coronary artery disease, IE = infectious endocarditis, HT = hypertension, ARD = aortic root disease, NSR = normal sinus rhythm, AF = atrial fibrillation, R = rhythm, NS = not significant

Symposium on Current Problems in Valvular Heart Disease
which showed a general improvement in the hemodynamics by reducing aortic regurgitation or improving ventricular pump function. However, there was an evident heterogeneity of response in some patients and such was likely to be related to the extent of the reduction in the preload.

The present study was designed to examine more precisely the variability in response to afterload reduction in the two different valvular lesions and to elucidate the possible factors responsible for the improvement of regurgitation in both clinical and experimental settings.

MATERIALS AND METHODS

Clinical Study

The study population consisted of 7 patients with aortic regurgitation of valvular origin and 5 patients with mitral regurgitation, 2 of which were related to a valvular lesion and 3 to a defect in subvalvular apparatus. The clinical profile of the patient group is shown in Table I.

Cardiac catheterization was performed with the patients in a fasting state and after light premedication with diazepam 10 mg im. Right heart catheterization was carried out with a No 7F Swan-Ganz balloon tipped thermodilution catheter. Left heart catheterization was performed using No 8F NIH closed tip catheter with multiple sideholes either percutaneously through a femoral artery or via a right brachial arteriotomy. All the pressures were recorded using Statham P23Db transducers. Cardiac output was measured in triplicate by the thermodilution technique using Nihon Koden MCL 4100 cardiac output computer.

Left ventriculography (60 frames/sec) was performed at the 30 degree right anterior oblique projection with injection of 25 to 40 ml of contrast medium (80% Angioconray®) at a rate of 10 to 14 ml/sec. After completion of all the control studies, sodium nitroprusside in concentrations ranging from 25 to 100 μg/min were infused to lower the peak systolic pressure by approximately 30% in aortic regurgitation and by 20% in mitral regurgitation. When stability of the desired pressure was confirmed for 10 min, all hemodynamic and angiographic measurements were repeated (Fig. 1).

Left ventricular volumes were calculated using the area length method which was modified for single plane cineangiography. Total stroke volume was divided by the end-diastolic volume yielding the left ventricular ejection fraction. Forward left ventricular stroke volume was derived from the cardiac output by the thermodilution divided by the heart rate. The regurgitant volume was calculated by subtracting the forward stroke volume from the total stroke volume. The regurgitant fraction was expressed.

Figure 1. Left ventricular and pulmonary capillary wedge pressure tracing before (left panel) and during (right panel) nitroprusside infusion in patient T.A. Reduction in peak left ventricular systolic pressure is associated with a dramatic decrease in the magnitude of the peak y wave as well as a decrease in left ventricular end-diastolic pressure during nitroprusside infusion.
as the regurgitant volume divided by the total stroke volume.

Experimental Study

Mongrel dogs were anesthetized with sodium pentobarbital. Respiration was controlled by a Harvard pump delivering room air via an endotracheal tube; a thoracotomy was performed in the fifth left intercostal space and the pericardium was opened. A high fidelity pressure micromanometer (Konigsberg P-22) was inserted at the left ventricular apex. A pair of ultrasonic crystals was then implanted to measure the instantaneous transverse diameter of the left atrium and the left ventricular segment length. A flow probe was placed around the ascending aorta and forward stroke volume was recorded using a Narco RT500 electromagnetic flowmeter.

After control recordings, mitral regurgitation was produced by the following two approaches: one was by sectioning the chordae tendineae through the transventricular route, the other was by external bypass circuit which permitted blood to flow from the left ventricle to the left atrium during systole. When the stable state was obtained after the induction of mitral regurgitation, we infused nitroprusside at a rate of 5 μg/kg/min. Recordings were repeated when systolic pressure decreased 20% below the control level.
RESULTS

Clinical Study

Table I summarizes the hemodynamic effects of nitroprusside in the 5 patients with mitral regurgitation and 7 patients with aortic regurgitation. In all patients with mitral regurgitation, the same directional changes were observed. Heart rate did not change significantly (from 82 to 83/min). The average peak left ventricular systolic pressure (LVSP) fell significantly (−16%) as did the left ventricular end-diastolic pressure (LVEDP) (−32%) (Fig. 2). In 2 cases, measurement of pulmonary capillary wedge pressure was repeated during nitroprusside infusion in which a dramatic decrease in v wave was observed (Fig. 1). In one patient (HW), LVSP remained unchanged, presumably because a substantial increase in forward stroke volume (FSV) which occurred along with a decrease in systemic vascular resistance counteracted a fall in aortic pressure. Nitroprusside infusion produced a significant increase in cardiac output (+29%) and forward stroke volume (+31%) (Fig. 2). End-diastolic and end-systolic volumes decreased by 14% and 18%, respectively. Total stroke volume tended to decrease but the changes were not statistically significant. Thus, the observed increase in the forward stroke volume was almost entirely the result of decreases in regurgitant volume (−60%) and in regurgitant fraction (−69%). Ejection fraction was not affected by nitroprusside (Fig. 3).

In patients with aortic regurgitation, nitroprusside infusion produced a significant reduction in LVSP and LVEDP. Five of these 7 patients had an elevated peak systolic pressure in the resting state (more than 150 mmHg), and 3
exhibited abnormally high resting LVEDP (more than 20 mmHg). The heart rate increased significantly on the average from 69 to 79 beats/min, but in one patient (MS), there was a reduction in heart rate during nitroprusside infusion. FSV was augmented in 2 patients (MS, KS), unchanged in 2 (MH, KY) and decreased in 3 (HI, KK, UM) (Fig. 2).

With regard to left ventricular volumes, the end-diastolic and end-systolic volumes decreased by 12% and 23%, respectively, with an insignificant change in the total stroke volume. Ejection fraction increased from 55 to 62%. There was no consistent change in regurgitant volume. Regurgitant fraction remained unchanged (Fig. 3).

In 2 patients (MS, KS), in whom there was an increase in FSV, the LVEDP which was initially elevated was reduced but to levels slightly above normal. Hereby, end-diastolic volume was reduced by 6% in one (MS) and 7% in the other (KS), accompanied by substantial augmentations of the total stroke volume and ejection fraction. Thus, these favorable effects in improving FSV were mostly the result of an increase in pump function. In the patients with relatively low levels of LVEDP, further reduction in filling pressure with vasodilator therapy resulted in no benefit or rather a fall in FSV.

Experimental Studies

Acute onset of mitral regurgitation in the canine heart induced initially an augmentation of atrial shortening with chamber dilation as a result of an optimal use of the Frank-Starling mechanism of atrial muscle. As mitral regurgitation was progressively increased, the extent of the atrial shortening and expansion was diminished, despite the geometrical advantage of a further increase in atrial diameter (Fig. 4). The left atrial pressure was markedly elevated with an abbreviation of the x descent and striking increase in v wave with early onset of its ascent. The left ventricular cavity continuously enlarged with resultant increase in wall shortening. Despite this enhanced pump function, FSV was appreciably diminished (Fig. 4). With nitroprusside, there was a significant fall in LVSP and in atrial pressure with a marked reduction in v wave. The atrial diameter decreased with restoration of active atrial shortening. Left ventricular size was also remarkably decreased accompanied by the reduction of LVEDP. FSV was substantially augmented (Fig. 4). All of these findings indicated a reduction in the regurgitant volume.

In mitral regurgitation induced by the external bypass circuit, there was a considerable acceleration of systolic pressure fall in the early phase of ventricular ejection. LVEDP was elevated. Left ventricular and left atrial chamber sizes were significantly enlarged with a resultant enhancement of myocardial shortening. In this preparation, nitroprusside infusion was started before regurgitation became extremely severe as in the case with chordal rupture, which resulted in a substantial fall in FSV associated with definite reduction in end-diastolic dimension of the left ventricular and left atrial chambers (Fig. 5).

DISCUSSION

Chatterjee et al. first demonstrated favorable effects of nitroprusside on hemodynamics in patients with mitral regurgitation due to dysfunction of the subvalvular mitral apparatus. In the situation when the ventricle is subjected to acute severe volume overloading, the Frank-Starling reserve becomes exhausted and the left ventricle is forced down a maximally shifted force-velocity-length relationship due to the increased afterload with enhanced systolic pressure, cardiac dilatation, and wall thinning, all determinants of wall stress. Thus, left ventricular failure may be the result of the acute afterload mismatch with depressed stroke volume due to severe mechanical overload in the face of a fully utilized preload reserve, despite an unaltered contractile state of myocardium.

Afterload reduction in this condition will exert a dramatic effect on improving pump function by simple correction of afterload mismatch. However, when we applied nitroprusside to the ventricle with severe mitral regurgitation in both clinical and experimental settings, no significant augmentation of the total pump function was observed. When the left ventricular end-diastolic volume was reduced to a relatively low level after nitroprusside, total stroke volume substantially fell.

With the onset of mitral regurgitation in the dogs, the peak left ventricular pressure declined accompanied by a significant change in the contour of the tracing, i.e., the pressure reached its peak in early systole and declined rapidly during ejection. Left ventricular chamber size was also reduced more rapidly during the pre-ejection phase of systole due to regurgitation of blood into the left atrium, as a consequence of mitral incompetence. Since wall tension is a...
function of both ventricular pressure and radius, the combination of a decrease in left ventricular pressure and an acceleration in reduction in the ventricular volume results in a precipitous decline in tension during the course of ejection. Thus, the left ventricle is already in an unloaded state with occurrence of mitral regurgitation and further reduction in systemic resistance induced by a vasodilating agent is not likely to improve pump function of the left ventricle but rather will redistribute the left ventricular output so that a greater portion is directed forward by virtue of its selective lowering of aortic impedance.11,15

According to the hydraulic formula of Gorlin and Dexter16 the amount of regurgitation is dependent on the area of the regurgitant mitral orifice, the pressure gradient across it and the duration of ventricular systole. Because the square route of pressure is used in the equation, it is reasonable to assume that factors which alter the regurgitant orifice size affect the regurgitation relatively more than would similar changes in the pressure gradient. Importance of orifice size in reducing regurgitant volume has been well demonstrated in the experiments of Yoran et al.17,18 in which phasic transmirtal flow was directly measured by an electromagnetic flow probe placed around the mitral annulus, together with a aortic flow to calculate filling volume, stroke volume and regurgitant volume, on a beat to beat basis. They demonstrated that when norepinephrine was given, systolic transmirtal pressure gradient increased by 50\% but regurgitant volume actually decreased by 12\%, reducing the regurgitant fraction by 20\%. If the regurgitant area had been fixed, the increase in systolic pressure gradient would have resulted in an increase of regurgitant volume by 6\%.17

Borgenhagen et al.19 using an angiographic method demonstrated that the mitral area for regurgitation was not fixed but was actively determined by ventricular dynamics, and they speculated that factors which tend to reduce ventricular size are responsible for a reduction in mitral regurgitation, largely independent of changes in transvalvular gradients. Our study demonstrated that in patients with mitral regurgitation, left ventricular systolic and end-diastolic pressures were similarly reduced with nitroprus-
prusside, this drug did not alter left ventricular end-diastolic volume or end-diastolic pressure. Accordingly, augmentation of cardiac output was considered to be related solely to the reduction in aortic impedance. Arteriolar effects may play a primary role in cases with a fibrous or calcified valve orifice, however, in most patients with mitral regurgitation, the valve orifice is rarely fixed. The direct effect of preload reduction by nitroprusside on regurgitant orifice size is no doubt the primary mechanism for improvement of regurgitation.

Contrary to the consistent reduction in regurgitant volume in mitral regurgitation, with no significant change in pump function (as reflected by unchanged ejection fraction), vasodilator therapy in aortic regurgitation induced some heterogeneity in response. In 2 patients, improvement of forward stroke volume was achieved by substantial rise in the ejection fraction which was brought about by a reduction in impedance to ejection, while maintaining a relatively high filling pressure. Thus, in these patients, forward cardiac output was enhanced by virtue of increased total stroke volume, at the expense of increased regurgitant volume, the regurgitant fraction being maintained unchanged. In 3 patients, nitroprusside induced a substantial decrease in forward stroke volume associated with an extreme fall in end-diastolic pressure and end-diastolic volume. The importance of maintaining filling pressure at an optimal level in vasodilator therapy for regurgitant valvular disease with fixed regurgitant orifice is exemplified by an animal experiment in which mitral regurgitation was induced by an external bypass circuit with a fixed caliber. In this experimental model, afterload reduction to the same extent as in the mitral regurgitation due to chordal rupture, resulted in a decrease in total excursion with diminished chamber size.

A framework for understanding these divergent responses of the ventricle with aortic regurgitation to vasodilator therapy is shown in Fig. 6. The failing heart with markedly elevated end-diastolic pressure is assumed to be operating at a high and steeper portion of the passive pressure-volume curve (Fig. 6, point A) where considerable decrease in end-diastolic pressure is associated with only small change in end-diastolic volume (Fig. 6, point B). In such a ventricle with an almost fixed preload, the afterload reduction directly enhances the ejection, according to the simple expression of force-shortening relation-

Fig.6. Diagram showing relations between the left ventricular end-diastolic pressure (EDP) and left ventricular end-diastolic volume (EDV) at the resting state (upper panel) and those between the extent of ventricular shortening (stroke volume [SV]) and afterload (aortic pressure [AoP]) (lower panel). In the ventricle in which the limit of preload reserve is approached (point A), afterload mismatch can be corrected by vasodilator therapy provided venous return is maintained (point B). In the ventricle operating at relatively compliant portion of its passive pressure-volume curve (point C), actual fall in stroke volume may occur when afterload is reduced if the preload is also allowed to fall (point D).
ship (from point A to point B in the lower panel of Fig. 6). On the contrary, the heart with end-diastolic pressure of normal range is operating at the lower flat portion of the passive pressure-volume curve (point C in the upper panel of Fig. 6), where marked reduction in end-diastolic volume with less change in end-diastolic pressure is induced by a reduction in venous return (point D). Thus, with nitropresside, the ventricle shifts to a new force-shortening curve displaced downward, hereby, any effects due to afterload reduction tend to be offset (point D in lower panel).

In summary vasodilator therapy is uniformly effective in reducing mitral regurgitation and in increasing forward stroke volume primarily by decreasing the regurgitant orifice size as a result of the reduction in left heart chamber size. The afterload reduction in patients with aortic regurgitation yields a variable response depending on the accompanying change in preload. The patients who have pump failure with elevated end-diastolic pressure are likely to benefit from afterload reduction by correcting afterload mismatch, provided venous return is maintained, while a reduction in mean circulatory pressure with inadequate maintenance of venous return in patients with a lower level of end-diastolic pressure may induce no change or actual fall in forward stroke volume, despite an enhanced cardiac function.

Acknowledgement

We thank M. Ohara, Kyushu University for her help in preparation of this manuscript.

REFERENCES

7. HARSHOW CW, GROSSMAN W, MUNRO AB, MCLAURIN LP: Reduced systemic vascular resistance as therapy for severe mitral regurgitation of valvular origin. Ann Intern Med 83: 312, 1975

Japanese Circulation Journal Vol. 46, April 1982