EFFECT OF OKY-046, A THROMBOXANE A₂ SYNTHETASE INHIBITOR, ON ARACHIDONATE-INDUCED PLATELET AGGREGATION: POSSIBLE ROLE OF "PROSTAGLANDIN H₂ STEAL" MECHANISM

TSUNEHIKO KUZUYA, M.D., SHIRO HOSHIDA, M.D., MASAKAZU YAMAGISHI, M.D. MASAHARU OHMORI, M.D., MICHITOSHI INOUE, M.D., TAKENOBU KAMADA, M.D. AND MICHIHKO TADA, M.D.*

To clarify the mode of action of a selective thromboxane A₂ (TXA₂) blockade in platelet reactivity, we examined the effect of (E)-3-[4-(1-imidazolylmethy)phenyl]-2-propenoic acid hydrochloride (OKY-046), a potent TXA₂ synthetase inhibitor, on human platelet aggregation induced by arachidonic acid (1 mM) in the absence and presence of aspirin-treated aortic microsomes containing prostacyclin (PGI₂) synthetase activity ex vivo. The production of TXA₂ and PGI₂ in platelet rich plasma was determined by the amounts of their stable catabolites, TXB₂ and 6-keto-PGF₁α respectively, measured by radioimmunoassay. In the absence of aortic microsomes, OKY-046 (≥ 10⁻⁵ M) produced more than 90% inhibition of TXA₂ production, whereas platelet aggregation was less inhibited, about 40% inhibition over control, by OKY-046 in that concentration. In the presence of aortic microsomes, the inhibitory effect of OKY-046 on platelet aggregation was markedly augmented in a dose-dependent manner in proportion to the increment of PGI₂ production, which paralleled the OKY-046-induced inhibition of TXA₂. These results suggest that a selective TXA₂ blockade produces effects on platelet aggregation mainly in dual fashion in the presence of PGI₂ synthetase: one is due to mere inhibition of TXA₂ synthetase and the other is due to the enhancement of PGI₂ production probably involving "prostaglandin H₂ (PGH₂) steal" mechanism, in which PGH₂ accumulated in platelets is partly converted to a substrate of PGI₂ synthetase in aortic microsomes to produce PGI₂.

THROMBOXANE A₂ (TXA₂) is a main product of arachidonic acid metabolism in platelets and is the most potent inducer of platelet aggregation! Formation of this substance is increased under several conditions characterized by a thrombotic diathesis²–⁴ Therefore, drugs that inhibit TXA₂ production, especially selective inhibitors of this substance, have recently received much attention⁵.

We previously found that a TXA₂ synthetase inhibitor is effective in a partially constricted canine coronary artery in abolishing cyclic reduction of coronary flow (CRCF)⁶ which is known to originate from intravascular platelet aggregation⁶,⁷ When this inhibitor was intravenously injected during CRCF, CRCF was ef-

Key Words:
Platelet aggregation
Thromboxane A₂
Prostacyclin
Thromboxane A₂ synthetase inhibitor
"Prostaglandin H₂ steal" mechanism

(Received February 14, 1986; accepted June 16, 1986)
Division of Cardiology, First Department of Medicine and *Department of Pathophysiology, Osaka University School of Medicine, Osaka, Japan

This work was in part supported by grants from the Ministry of Education, Science and Culture and the Welfare Ministry of Japan, and by a grant-in-aid from the Muscular Dystrophy Association of America.
Mailing address: Tsunehiko Kuzuya, M.D., Division of Cardiology, First Department of Medicine, Osaka University School of Medicine, 1-1-50 Fukushima, Fukushima-ku, Osaka 553, Japan

Japanese Circulation Journal Vol. 30, November 1986 1071
potently suppress platelet aggregation in vivo through such a mechanism termed "PGH₂ steal".

The present study was designed to examine whether "PGH₂ steal" mechanism can operate on human platelet rich plasma and to clarify how such a mechanism contributes to the anti-aggregating effect of a TXA₂ synthetase inhibitor.

METHODS

Preparation of Platelet Rich Plasma

Blood was collected by clean venipuncture from 20 human subjects, who denied having taking medication containing aspirin for two weeks previously, into one-tenth volume of 3.8% trisodium citrate. Platelet rich plasma (PRP) was prepared by centrifugation at 600 rpm for 10 min at room temperature. The upper turbid layer of PRP was transferred to a polystyrene tube and the residual blood was centrifuged at 3000 rpm for 15 min to obtain platelet poor plasma (PPP). The platelet count in the PRP was determined using a Coulter Counter and the PRP was diluted to a count of $2.5 \times 10^5/\mu l$ using autologous PPP and was used within 2 hours of preparation.

Preparation of Aortic Microsomes

Bovine aortas were obtained from a local abattoir and the adventitia was stripped off and discarded. For preparation of the microsomes, the aortic wall was crushed into a fine powder, resuspended (1:4, W:V) in 50 mM Tris buffer (pH 7.5) with 1g aspirin and homogenized at high-speed in a "Polytron" homogenizer. Micromosal fractions were prepared according to the method previously described by Gryglewski et al.10 and contained 51% protein as determined by the method of Lowry et al.11 They were resuspended in deionized water and lyophilised. These aortic microsomes were employed as the source of PGI₂ synthetase9,10

Platelet Aggregation Studies

Platelet aggregation in fresh PRP was monitored in a model RAM Multichannel Platelet Aggregometer (Rikadenki, Japan) with stirring at 1,100 rpm using the method of Born12 Platelets were pre-incubated with a potent TXA₂ synthetase inhibitor, (E)-3-[4-(1-imidazolylmethyl)phenyl]-2-propenoic acid hydrochloride (OKY-046, 10^{-8} to 10^{-4} M)13 and aortic microsomes diluted with 50 mM Tris buffer (pH 7.5) for 1 min at room temperature before the addition of 25 µl.
arachidonic acid (1 mM). There was no difference in the inhibitory effect of OKY-046 on TXB₂ production for more than 1 min of pre-incubation time. The final volume of platelet suspension was always 300 μl, containing 6.25×10^7 platelets and 8 mM Tris buffer. Platelet aggregation was expressed as % aggregation over control (in the absence of OKY-046 and aortic microsomes) at 5 min after addition of arachidonic acid. In this study, the amount of aortic microsomes employed was 0.1 mg protein/mL, which did not affect arachidonic acid-induced platelet aggregation per se. Arachidonic acid (sodium salt) was obtained from the Sigma Chemical Co.; OKY-046 was supplied by Ono Pharmaceutical Co. and Kissei Pharmaceutical Co., Japan.

TXB₂ and 6-keto-PGF₁α Production

At the end of aggregation study, indomethacin (0.1 mM) and ethylenediamine tetraacetic acid (1 mM) were added to the PRP samples to avoid the secondary production of TXA₂ and PGI₂. They were stored at -20°C until assay. To examine the time courses of these production, platelet aggregation was stopped by adding these substances at the specified time intervals. The PRP samples were carefully thawed and were diluted with saline and the production of immunoreactive TXB₂ and 6-keto-PGF₁α in the diluted samples were measured using a specific radioimmunoassay for TXB₂ and 6-keto-PGF₁α according to the method previously described.²,⁶

RESULTS

Effect of OKY-046 on Arachidonic Acid-Induced Platelet Aggregation

Figure 1 shows the typical time courses of platelet aggregation induced by arachidonic acid in a representative case. 10⁻⁵ M OKY-046 exhibited only a slight inhibition of platelet aggregation, while in the presence of aortic microsomes, this agent markedly inhibited platelet aggregation and further exhibited disaggregating effect. To investigate the anti-aggregating effect of OKY-046 ex vivo, platelet aggregation was examined at 5 min after adding arachidonic acid in the presence of OKY-046 (10⁻⁸ to 10⁻⁴ M) in the PRP samples obtained from 20 cases (Fig. 2). In the absence of aortic microsomes, platelet aggregation was little inhibited at more than 10⁻⁶ M OKY-046 and about 40% inhibition was
attained at $10^{-4} \text{ M OKY-046}$. In the presence of aortic microsomes, the inhibition was markedly potentiated, so that even $10^{-6} \text{ M OKY-046}$ gave 45% inhibition with a maximal inhibition of 82% above 10^{-5} M (Fig. 2). These findings indicated that anti-aggregating agent, possibly PGF$_{2\alpha}$, was
Anti-Platelet Effect of OKY-046

Fig. 5. Correlation between the augmented inhibition of platelet aggregation and the amount of 6-keto-PGF$_{1\alpha}$ both produced by OKY-046 in platelet rich plasma coexisted with aortic microsomes. The open circles represent the mean values of platelet aggregation inhibited and 6-keto-PGF$_{1\alpha}$ produced both which were subtracted their values in the absence of aortic microsomes from those in the presence of aortic microsomes in each concentration of OKY-046.

released into the reaction medium with the aid of aortic microsomes after the addition of arachidonic acid to the PRP samples.

Effect of OKY-046 on the Production of TXA$_2$ and PGI$_2$

Figure 3 shows the typical time courses of TXA$_2$ and PGI$_2$ production, estimated by the amounts of TXB$_2$ and 6-keto-PGF$_{1\alpha}$ released respectively, in a PRP sample during arachidonic acid-induced platelet aggregation. In the absence of OKY-046 and aortic microsomes (control), TXA$_2$ was precipitously produced and its amount plateaued at 5 min after the addition of arachidonic acid. When aliquotes of PRP were pre-incubated with 10^{-6} M OKY-046, the arachidonic acid-induced TXA$_2$ production was markedly inhibited (Fig. 3, left panel). The extent of the inhibitory action of OKY-046 was virtually similar, both in the absence and presence of aortic microsomes. In contrast, in the presence of aortic microsomes, addition of arachidonic acid provoked marked production of PGI$_2$ in PRP pre-incubated with 10^{-6} M OKY-046, while PGI$_2$ production was not detected in control PRP (Fig. 3, right panel). Since TXA$_2$ and PGI$_2$ production nearly plateaued at 5 min after the addition of arachidonic acid, we examined the effect of OKY-046 in the different concentrations on these production at 5 min of aggregation in the absence and presence of aortic microsomes (Fig. 4). There was virtually no difference in TXA$_2$ production under these conditions: 10^{-6} M OKY-046 exhibited about 50% inhibition of TXA$_2$ production, and more than 90% inhibition was attained at 10^{-5} M. It was also found that PGI$_2$ production, which was only seen in the presence of aortic microsomes, was augmented along with the increase in the concentration of OKY-046, in that PGI$_2$ production was markedly potentiated at more than 10^{-6} M OKY-046 which was enough to inhibit TXA$_2$ production significantly, reaching the maximal production of about 26 ng/5 min/ml at 10^{-6} M OKY-046 (Fig. 4).

Correlation between the Effects of OKY-046 on Platelet Aggregation and Prostanoid Production

Since the potentiated inhibition of platelet aggregation by OKY-046 in the presence of aortic microsomes was assumed to be related to enhanced production of PGI$_2$ in addition to the inhibition of TXA$_2$ production, we examined the correlation between the augmented inhibition of
platelet aggregation and PGI₂, estimated by the amount of 6-keto-PGF₁α, both produced by OKY-046 in PRP including aortic microsomes (Fig. 5). In proportion as PGI₂ production was augmented along with the increase in the concentration of OKY-046, the additional inhibition of platelet aggregation, that is, increment in the inhibitory effect of OKY-046 on platelet aggregation caused by the presence of aortic microsomes, was linearly increased. Figure 6 shows the inhibitory effects of OKY-046 on platelet aggregation and TXA₂ production both in the absence and presence of aortic microsomes. In the absence of aortic microsomes, OKY-046 caused the reduction of TXA₂ production in a dose-dependent manner, whereas platelet aggregation was less inhibited. In the presence of aortic microsomes, however, the inhibitory effect of OKY-046 on TXA₂ production paralleled its effect on the inhibition of platelet aggregation. The augmented inhibitory effect on platelet aggregation was almost twice as much in each concentration of OKY-046 as that in the absence of aortic microsomes.

DISCUSSION

The inhibitory effect of OKY-046 on arachidonic acid-induced platelet aggregation was markedly enhanced associated with augmented PGI₂ production when platelets coexist with aortic microsomes ex vivo. Human platelet aggregation, induced by arachidonic acid, was inhibited only by 40%, at most, under mere TXA₂ synthesis inhibition, possibly due to the augmented production of endoperoxide PGH₂, a proaggregatory precursor of TXA₂. However, the inhibitory effect of OKY-046 on platelet aggregation in the presence of aortic microsomes containing PGI₂ synthetase was markedly augmented in a dose-dependent manner in proportion to the increment of PGI₂ production. It was also noted that PGI₂ production in PRP paralleled the OKY-046-induced inhibition of TXA₂. These findings indicate that a TXA₂ synthetase inhibitor potentiates its effect on the inhibition of platelet aggregation ex vivo associated with augmented PGI₂ production in the presence of PGI₂ synthetase, which can utilize PGH₂ released from platelets to produce PGI₂.
In platelets, the dominant route of transformation of proaggregatory endoperoxide PGH₂ is to the unstable substance TXA₂ which is a more potent aggregating agent. Many studies have found to report the increase in some prostaglandins such as prostaglandin D₂, E₂ and F₂α when this step is selectively inhibited by TXA₂ synthetase inhibitors. It has been also postulated that PGH₂ accumulated in platelets by these agents is partly converted to a substrate of PGI₂ synthetase in vascular endothelium to produce PGF₁α-20 and the amounts of PGH₂ stolen from platelets to vascular endothelium should increase with TXA₂ synthetase inhibition ("PGH₂ steal" mechanism). However, it has been undefined whether such a mechanism between platelets and vascular wall could contribute to anti-platelet action of these agents.

The present study examining the effect of OKY-046 on platelet aggregation of human PRP coincubated with aortic microsomes, revealed that a TXA₂ synthetase inhibitor more effectively inhibited platelet aggregation in proportion to augmented amounts of PGI₂ production through this mechanism, though the amounts of PGH₂ stolen from platelets to aortic microsomes to produce PGF₁α were small (less than 5% of the decrement of TXA₂). In accordance with these findings, it is feasible that PGI₂, but not other prostaglandins, produced when TXA₂ synthesis is selectively blocked in the presence of PGI₂ synthetase, plays an important role in the augmented inhibition of platelet aggregation. In other words, a TXA₂ synthetase inhibitor produces mainly the dual actions on the platelet aggregation in the presence of PGI₂ synthetase; one is due to mere inhibition of proaggregatory TXA₂ and the other is due to the augmented production of antiaggregatory PGI₂ deriving from "PGH₂ steal" mechanism.

Though it is difficult to extrapolate results obtained from the investigation of platelets ex vivo to the in vivo situation, it would seem that inhibition of TXA₂ synthetase affects platelet behavior in local site more dramatically in vivo than does ex vivo as long as the endothelium has intact activity of PGI₂ synthetase. These contentions may be supported by our previous data in that a TXA₂ synthetase inhibitor actively suppressed intracoronary platelet aggregation in an experimental model with increased PGF₁α levels in the coronary venous blood. Atheromatous lesions contain relatively high concentrations of lipid peroxides, one of which is 15-hydroperoxy arachidonic acid that greatly inhibits PGI₂ synthetase. Formation of PGI₂ could be of great physiological importance in the maintenance of the integrity of the vessel walls. In the pathophysiological conditions such as coronary artery disease, the balance between TXA₂ and PGI₂ generating systems is considered to shift towards the TXA₂ pathway leading to irreversible platelet aggregation and vasoconstriction. The effect of a selective TXA₂ synthetase inhibitor on the clinical course in patients with coronary artery disease would depend considerably on the extent of vascular PGI₂ production. It is not known, however, whether "PGH₂ steal" mechanism, such as that observed under experimental conditions, actually takes place in the disordered coronary circulation in diseased patients when they are treated with TXA₂ synthetase inhibitors.

REFERENCES

10. GRYGIELSKI RJ, BUNTING S, MONCADA S, FLOWER RJ, VANE JR: Arterial walls are protected against deposition of platelet thrombi by a substance (prostaglandin X) which they make from prostaglandin endoperoxides. Prostaglandins 12: 685, 1976

15. GORMAN RR, BUNDY GL, PETERSON DC, SUN FF, MILLER OV, FITZPATRICK FA: Inhibition of human platelet thromboxane synthetase by 9, 11-azoprostanoic acid. Proc Natl Acad Sci USA 74: 4007, 1977

Japanese Circulation Journal Vol. 50, November 1986