Stunned Myocardium and Oxygen Free Radicals
— Sarcolemmal membrane damage due to oxygen free radicals —

MASANORI KANEKO, M.D., HIDEHARU HAYASHI, M.D., AKIRA KOBAYASHI, M.D.
NOBORU YAMAZAKI, M.D. AND NARANJAN S. DHALLA, PhD.

Reperfusion after reversible ischemia has been shown to result in prolonged depression of contractile function ("myocardial stunning"). Recent studies suggest that oxygen free radicals may mediate postischemic dysfunction. Since heart sarcolemmal membranes, which contain several types of enzymes, ion channels and receptors play important roles to maintain cell functions, the present study was undertaken to examine the effects of oxygen free radicals on heart sarcolemmal membrane functions in vitro. In the presence of a superoxide anion radical-generating system (2mM xanthine plus 0.03 U/ml xanthine oxidase), sarcolemmal Ca\(^{2+}\)-stimulated ATPase activity and ATP-dependent Ca\(^{2+}\) accumulation were inhibited in an incubating time-dependent manner. Both lipid peroxidation (r=0.82) and sulphhydril group content (r=0.95) showed significant correlations with Ca\(^{2+}\)-stimulated ATPase activity. ATP-independent Ca\(^{2+}\) bindings were increased upon treating the membranes with xanthine plus xanthine oxidase. Voltage-dependent Ca\(^{2+}\)-channels were also affected by oxygen free radicals. The maximal number of binding sites (B\(_{\text{max}}\)) for \(^{3}H\)-nitrendipine binding was depressed without any changes in dissociation constant (Kd). The effects of oxygen free radicals on adrenergic receptors were more complex. B\(_{\text{max}}\) for \(^{3}H\)-dihydroalpranolol (DHA) binding (\(\beta\)-receptor) was increased whereas B\(_{\text{max}}\) for \(^{3}H\)-prazosin binding (\(\alpha_{1}\)-receptor) was decreased after incubating the membrane with xanthine plus xanthine oxidase. Kd for \(^{3}H\)-DHA or \(^{3}H\)-prazosin binding was increased. Superoxide dismutase showed protective effects on the changes in these membrane functions due to xanthine plus xanthine oxidase. It is suggested that oxygen free radicals damage heart sarcolemmal membranle functions which may lead to cardiac dysfunction in the stunned myocardium.

Reperfusion after a brief episode of myocardial ischemia may result in prolonged contractile dysfunction without cell necrosis, a phenomenon known as "myocardial stunning!" Despite considerable investigative efforts, the mechanisms responsible for this phenomenon remain unclear.

Recently, the data in the literature support the concept that stunned myocardium is mediated, at least in part, by oxygen free radicals because 1) oxygen free radicals have been demonstrated to be increased in the myocardium\(^2\) or in the coronary venous effluent of hearts\(^3\) stunned by brief periods of ischemia and reperfusion; 2) exogenously administered oxygen free radical-generating

Key words:
- Stunned myocardium
- Free radicals
- Heart sarcolemmal membrane
- Calcium
- Adrenergic receptors

*The Third Department of Internal Medicine, Hamamatsu University School of Medicine, Hamamatsu, Japan. *St. Boniface General Hospital Research Centre, Winnipeg, Canada R2H 2A6.*
Mailing Address: Masanori Kaneko, M.D., The Third Department of Internal Medicine, Hamamatsu University School of Medicine, Handa-cho, 3.600, Hamamatsu 431-31, Japan

solutions depress myocardial function4,5; and 3) the recovery of the stunned myocardium is enhanced by agents that either scavenge oxygen free radicals, such as superoxide dismutase and catalase6 N-(2-mercaptopyrrolidinyl) glycine7, and di-methylthiourea8 or prevent their generation, such as allopurinol9

Since heart sarcolemmal membranes, which contain several types of enzymes, ion channels and receptors, play important roles to maintain the cell functions, damage of the sarcolemmal membranes may lead to dysfunction of myocardial cells. The recent study was undertaken to examine the effects of oxygen free radicals on Ca2+-stimulated Mg2+-dependent ATPase (Ca2+-stimulated ATPase) activity, ATP-dependent Ca2+ accumulation, ATP-independent Ca2+ binding, voltage dependent Ca2+ channel, and adrenergic receptors (\(\alpha_1\) and \(\beta\) receptors) in rat cardiac sarcolemmal membranes in vitro.

METHODS

\textit{Isolation of sarcolemmal membranes}

Male Spague-Dawley rats weighing 200-250g were killed by decapitation. Hearts were removed, and the ventricular tissue was processed for the isolation of sarcolemmal membranes by the sucrose gradient method10 or the hypotonic shock LiBr treatment method11. These purified membranes were characterized with respect to marker enzyme activities and were found to be devoid any major cross contamination14

Protein concentration was estimated by the method of Lowry et al12

\textit{Measurement of Mg2+-ATPase and Ca2+-stimulated ATPase activities}

For the estimation of Mg2+-ATPase, sarcolemmal vesicles (20–50 \(\mu\)g protein) were preincubated at 37°C for 5 min in 0.5 ml of medium containing 140 mM KCl-10 mM MOPS-Tris (pH 7.4), 2 mM MgCl\textsubscript{2}, 5 mM sodium azide, and 0.2 mM ethylene glycol bis (\(\beta\)-aminoethyl ether \(\cdot\))N, N, N', N'-tetra-acetic acid (EGTA). The reaction was started by the addition of 4 mM Tris-ATP (pH 7.4) and was terminated 5 min later with 0.5 ml of cold 12% trichloroacetic acid; the liberated phosphate was measured by the method of Tausky and Shorr13. Estimation of total (Ca2+-stimulated + Mg2+) ATPase was carried out in the medium containing 140 mM KCl-10 mM MOPS-Tris (pH 7.4), 2 mM MgCl\textsubscript{2}, 5 mM sodium azide, and \(1 \times 10^{-5}\)M free Ca2+. The concentration of free Ca2+ in the medium was adjusted by using EGTA14. The Ca2+-stimulated ATPase activity was the difference between the total ATPase and Mg2+-ATPase activities.

\textit{ATP-dependent Ca2+-accumulation assay}

Sarcolemmal vesicles (100 \(\mu\)g protein) were preincubated in 0.5 ml of medium containing 140 mM KCl-10 mM MOPS-Tris (pH 7.4), 2 mM MgCl\textsubscript{2}, and desired amount of \(45\text{CaCl}_2\)-EGTA (\(45\text{CaCl}_2\) 39.56 mCi/ng; New England Nuclear, Boston, MA) to give 1x10 \(-3\)M free Ca2+.14 Ca2+ accumulation was initiated by adding 4 mM Tris-ATP (pH 7.4). After 5 min of incubation at 37°C, 250 ul aliquots were immediately filtered through Millipore filters (0.45 \(\mu\)m), washed with 2x3-ml ice-cold KCI-MOPS and 1 mM LaCl\textsubscript{3} (pH 7.4), dried, and the radioactivity determined for calculating the total Ca2+ accumulation.

Non-specific Ca2+ binding was measured in the absence of ATP for each set of experiments. The ATP-dependent Ca2+ accumulation was calculated by subtracting non-specific Ca2+ binding from total Ca2+ accumulation.

\textit{Determination of lipid peroxidation and sulfhydryl group content}

The lipid peroxidation was assayed by measuring the formation of malondaldehyde by the thiobarbituric acid method as described by Buege et all15

Sulfhydryl content of the sarcolemmal membranes was determined with 5, 5'-dithiobis (2-nitrobenzoic acid) (DTNB), according to the procedure described elsewhere16. The assay system contained 20 mM imidazole-HCl buffer (pH 7.0), 1 mM EDTA, and 0.2 mM DTNB. For the determination of free sulfhydryl groups, 200 \(\mu\)g membrane protein was incubated for 3 min in the above medium, and the absorbance at 412 nm was measured. For total sulfhydryl groups determination, the membrane was incubated for 30 min in the assay medium in the presence of 0.1% sodium dodecyl sulfate.
TABLE 1 EFFECTS OF XANTHINE+XANTHINE OXIDASE ON ATP-DEPENDENT Ca\(^{2+}\) ACCUMULATION AND ATP-ASE ACTIVITIES

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ATP-dependent Ca(^{2+}) accumulation (n mol Ca(^{2+})/mg protein/5 min)</th>
<th>ATPase activity (μ mol Pi/mg protein/hr)</th>
<th>Mg(^{2+})-ATPase</th>
<th>Ca(^{2+})-stimulated ATPase</th>
</tr>
</thead>
<tbody>
<tr>
<td>Control</td>
<td>27.0±1.7</td>
<td>195±3</td>
<td>13.6±0.7</td>
<td></td>
</tr>
<tr>
<td>X</td>
<td>24.7±1.4</td>
<td>193±3</td>
<td>13.4±0.4</td>
<td></td>
</tr>
<tr>
<td>XO</td>
<td>24.2±1.3</td>
<td>194±3</td>
<td>14.0±0.4</td>
<td></td>
</tr>
<tr>
<td>X+XO</td>
<td>9.5±0.8*</td>
<td>176±2*</td>
<td>2.6±0.5*</td>
<td></td>
</tr>
<tr>
<td>X+XO+SOD</td>
<td>21.8±0.8*</td>
<td>192±2</td>
<td>10.1±0.4*</td>
<td></td>
</tr>
<tr>
<td>X+XO+SOD+CAT</td>
<td>21.7±0.8*</td>
<td>192±2</td>
<td>10.2±0.5*</td>
<td></td>
</tr>
<tr>
<td>SOD</td>
<td>30.6±2.0</td>
<td>193±3</td>
<td>13.9±0.5</td>
<td></td>
</tr>
<tr>
<td>CAT</td>
<td>26.4±1.1</td>
<td>193±3</td>
<td>13.3±0.3</td>
<td></td>
</tr>
</tbody>
</table>

Prior to assay for ATP-dependent Ca\(^{2+}\) accumulation and ATPase activity, sarcolemmal membranes (200 μg protein/ml for Ca\(^{2+}\) accumulation and 300–400 μg protein/ml for ATPase activity) were incubated for 30 min at 37°C in 140 mM KCl-10mM MOPS, pH 7.4 plus the additions shown. Controls were also incubated under similar conditions without any additions. The final concentrations of xanthine (X), xanthine oxidase (XO), superoxide dismutase (SOD), and catalase (CAT) were 2 mM, 23 μg/ml (0.03 U/ml), 80 μg/ml, and 10 μg/ml, respectively. Each value is a mean ± S.E. of 6 different preparations.

* significantly different from control values (P<0.05).

![Fig.1. Time-dependent effects of xanthine + xanthine oxidase on sulphydryl groups. At indicated times of incubation, samples were assayed for sulphydryl content. Each value is a mean ± S.E. of 6 different preparations. *significantly different from control values (p<0.05).](image)

(SDS). It should be mentioned that SDS dissociates the membrane and allows the measurement of both extra- and intramembranal sulphydryl groups. Calculation of the sulphydryl groups was based on a molar extinction coefficient of 13,600 M/cm.
TABLE II EFFECTS OF OXYGEN FREE RADICALS ON ATP-INDEPENDENT Ca\(^{2+}\) BINDING IN HEART SARCOLEMMAL MEMBRANES

<table>
<thead>
<tr>
<th>Treatment</th>
<th>ATP-independent Ca(^{2+}) binding (n mol/mg/5 min)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Low affinity (1.25 mM Ca(^{2+}))</td>
</tr>
<tr>
<td>Control</td>
<td>97.8±4.3</td>
</tr>
<tr>
<td>X (2 mM)</td>
<td>92.9±5.7</td>
</tr>
<tr>
<td>XO (0.03 U/ml)</td>
<td>101.6±6.5</td>
</tr>
<tr>
<td>X (2 mM) + XO (0.03 U/ml)</td>
<td>147.2±6.1*</td>
</tr>
</tbody>
</table>

Each value is a mean ± S.E. of 8 different preparations. The concentrations of Ca\(^{2+}\) were 1.25 mM and 0.05 mM for experiments on low-affinity binding and high-affinity binding, respectively. X: xanthine, XO: xanthine oxidase; the incubation period was 5 min. * Significantly different from control values (P<0.05).

![Graph](image)

Fig 2. Incubation time-dependent effects of xanthine + xanthine oxidase on the \(^{3}\text{H}\)-nitrrendipine binding with rat heart crude membranes. Membrane preparations (1-1.5 mg/ml) were preincubated at 37°C without (control ●—●) or with (○—○) 2 mM xanthine plus 0.03 U/ml xanthine oxidase in a medium containing 10 mM Tris-HCl, pH 7.4. At the indicated times of incubation, samples were diluted 20 times with 50 mM Tris-HCl, pH 7.4 and centrifuged at 48,000 g for 25 min and washed twice. Final pellet was suspended in 50 mM Tris buffer for \(^{3}\text{H}\)-nitrrendipine binding assay. Each value is a mean ± S.E. of 5 different preparations. *: significantly different from control values (p<0.05).

at 412 nm for the thiophenol reaction product. This was verified with cysteine as a standard.

Determination of ATP-independent Ca\(^{2+}\) binding

ATP-independent Ca\(^{2+}\) binding was determined by employing 1.25 mM (low-affinity, high-capacity Ca\(^{2+}\) binding) or 0.05 mM Ca\(^{2+}\) (high-affinity, low-capacity Ca\(^{2+}\) binding) according to the procedure reported before.

\[^{3}\text{H}\]-nitrrendipine binding assay

Japanese Circulation Journal Vol.35, September 1991
[3H]-nitrendipine binding was measured according to a method reported earlier. Crude cardiac membrane preparations (0.08-0.1 mg protein/tube) were incubated with 0.05 to 5 nM [3H]-nitrendipine in the absence or presence of 2 μM unlabelled nifedipine. The non-specific [3H]-nitrendipine binding (in the presence of nifedipine) was subtracted from the total binding (in the absence of nifedipine) to obtain specific binding. The non-specific [3H]-nitrendipine binding varied between 25 and 30% of the total binding values and none of the interventions employed in this study had any effect on the non-specific binding. [3H]-nitrendipine was obtained from New England Nuclear Medicine (Boston, USA) as 5-methyl-[3H]-nifedipine, with a specific activity of 80.9 Ci/mmol.

[3H]-dihydroalprenolol (DHA) and [3H]-prazosin binding assay

To determine β-adrenergic receptor binding, crude cardiac membranes were incubated with different concentrations of [3H]-DHA in the presence and absence of 10 μM l-propranolol. The α1-adrenergic receptor binding was analyzed by using an α1-adrenergic antagonist [3H]-prazosin in the presence and absence of 10 μM phenolamine hydrochloride.

Free radical-generating systems

Superoxide anion radicals were generated by the xanthine oxidase (Tecronch Laboratories) reaction in which xanthine was used as a substrate. Superoxide dismutase (SOD; Sigma), was used as a scavenger for superoxide anion radicals.

Statistical analysis

Results are presented as mean±SE. For statistical evaluation, multiple analysis of variance was carried out, and Duncan's multiple-range test was used to determine differences between the means within the population. p<0.05 was taken to reflect a significant difference.

RESULTS AND DISCUSSION

Effects of xanthine plus xanthine oxidase on ATP-dependent Ca2+ accumulation and ATPase activities

The effects of superoxide radicals on ATP-dependent Ca2+ accumulation and ATPase activities were examined by incubating the sarcolemmal membranes in the presence of 2 mM xanthine plus 0.03 U/ml xanthine oxidase. Table I shows that the incubation of membranes with either 2 mM xanthine, 0.03 U/ml xanthine oxidase, 80 μg/ml SOD, or 10 μg/ml catalase for 30 min did not affect ATP-dependent Ca2+ accumulation and ATPase activities. However, a combination of xanthine plus xanthine oxidase depressed ATP-dependent Ca2+ accumulation and Ca2+-stimulated ATPase activities by 65% and 81% of the control values, respectively. SOD showed a protective effect on the depression in Ca2+ accumulation and ATPase activities due to incubation with xanthine plus xanthine oxidase. To study the time-course effects of xanthine plus xanthine oxidase on Ca2+-stimulated ATPase activity, the enzyme activity was measured after 1, 5, 10, 30, and 60 min preincubation at 37°C. Ca2+-stimulated ATPase activity was inhibited in a time-dependent manner. The interaction of superoxide radicals with sarcolemmal membrane vesicles was rapid, because significant inhibition of Ca2+-stimulated ATPase activity was seen after 1 min of incubation.

Lipid peroxidation and sulphydryl group contents

Oxygen free radicals are known to attack molecules of major biological significance and these include phospholipids, proteins and nucleic acids. Since changes in lipid environment of membrane-bound enzyme protein can affect the enzyme activity, and since sulphydryl groups are known to regulate the oxidation of sulphydryl groups in the membrane may lead to the depression of enzyme activities because of oxygen free radicals.

Lipid peroxidation as reflected by MDA formation was measured after 30 min incubation at 37°C. The incubation of sarcolemmal vesicles in the presence of xanthine plus xanthine oxidase increased the level of MDA formation by 135% (8.3±0.03 nmol of MDA/mg protein) in comparison with the control samples (3.56±0.18 nmol MDA/mg
TABLE III TIME-DEPENDENT EFFECTS OF XANTHINE+XANTHINE OXIDASE ON [\(^{3}H\)]-DHA AND [\(^{3}H\)]-PRAZOSIN BINDING IN RAT HEART MEMBRANE

<table>
<thead>
<tr>
<th>Incubation Time</th>
<th>[(^{3}H)]-DHA binding</th>
<th>[(^{3}H)]-prazosin binding</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Kd (nM)</td>
<td>Bmax (fmol. mg(^{-1}))</td>
</tr>
<tr>
<td>10 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.649±0.055</td>
<td>70.5±6.2</td>
</tr>
<tr>
<td>X+XO</td>
<td>0.884±0.072*</td>
<td>107.3±8.5*</td>
</tr>
<tr>
<td>30 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.652±0.070</td>
<td>68.9±5.3</td>
</tr>
<tr>
<td>X+XO</td>
<td>1.231±0.143*</td>
<td>96.2±6.5*</td>
</tr>
<tr>
<td>60 min</td>
<td></td>
<td></td>
</tr>
<tr>
<td>Control</td>
<td>0.668±0.071</td>
<td>68.6±4.7</td>
</tr>
<tr>
<td>X+XO</td>
<td>1.127±0.121*</td>
<td>83.5±6.9</td>
</tr>
</tbody>
</table>

Each value is mean±S.E. of 5 different preparations. Prior to assay for both [\(^{3}H\)]-DHA and [\(^{3}H\)]-prazosin binding, crude membranes (1 mg/ml) were incubated without (control) or with 2 mM xanthine (X) plus 0.03 U/ml xanthine oxidase (XO) for different time periods at 37°C.
* Significantly different from control values (P<0.05).

protein). The addition of SOD to the incubation medium resulted in a significant decrease of MDA formation when compared with values obtained with xanthine plus xanthine oxidase.

Fig. 1 shows the time-dependent effects of superoxide radicals on sulphydryl groups. Free sulphydryl groups were significantly depressed after 3 min of incubation, whereas total sulphydryl groups were significantly depressed after 5 min of incubation. To find a relationship between Ca\(^{2+}\)-stimulated ATPase activity and lipid peroxidation or sulphydryl group contents, the data from experiments concerning the effects of oxygen free radicals on heart sarcolemma were plotted. Both lipid peroxidation (r=0.82) and sulphydryl groups (r=0.95) showed significant correlations with Ca\(^{2+}\)-stimulated ATPase activity.

ATP-independent Ca\(^{2+}\) binding

Membrane-bound Ca\(^{2+}\) in cardiac cell is believed to serve as a superficial store of Ca\(^{2+}\), which becomes available for entry upon excitation of the myocardium. In fact, ATP-independent Ca\(^{2+}\) binding in heart sarcolemma has been shown to exhibit a linear relationship with the contractile force development in the normal myocardium. Table II shows the effects of oxygen free radicals on ATP-independent Ca\(^{2+}\) binding. In the presence of xanthine plus xanthine oxidase, both low and high affinity Ca\(^{2+}\) binding were increased by 51% and 52% of control values, respectively.

Voltage-dependent Ca\(^{2+}\)-channel

Figure 2 shows incubation time-dependent effects of xanthine plus xanthine oxidase on [\(^{3}H\)]-nitrendipine binding with rat heart crude membranes. Specific binding of [\(^{3}H\)]-nitrendipine was significantly reduced after incubating the preparation for 10 and 30 min with oxygen free radical-generating system; 5 min incubation did not show significant changes. Since the activities of membrane-bound enzymes, such as Na\(^{+}\)-K\(^{+}\)-ATPase and Ca\(^{2+}\)-stimulated ATPase were significantly depressed within 5 min of incubation under similar experimental conditions, it appears that [\(^{3}H\)]-nitrendipine binding proteins are more resistant to the action of oxygen free radicals. The Scatchard plot analysis of the data revealed that the maximal number of binding sites (Bmax) was depressed by the oxygen free radical-generating system (control 199±12 fmol/mg protein, xanthine plus xanthine oxidase 139±7 fmol/mg protein) without any changes in the dissociation constant (Kd) (control 0.231±0.011 nM, xanthine plus xanthine oxidase 0.252±0.011 nM).

The presence of SOD in the xanthine plus xanthine oxidase mixture was capable of preventing the effects of this radical-generating system (Bmax 171±10 fmol/mg protein). Xanthine, xanthine oxidase or SOD did not
exert any effect on the Bmax or Kd values for [3H]-nitrendipine binding. It should be pointed out that non-specific binding values for xanthine plus xanthine oxidase-treated group were not significantly different from those for the control group.

Adrenergic receptors

Table III shows the incubation time-dependent effects of xanthine plus xanthine oxidase on [3H]-DHA and [3H]-prazosin binding. The Scatchard plot analysis of the data revealed that Bmax for [3H]-DHA binding was increased after incubating the preparations for 10 min or 30 min with superoxide radical generating system; 60 min incubation did not show any significant changes. On the other hand, Bmax for [3H]-prazosin was unchanged at 10 min and 30 min incubation but was decreased following 60 min incubation with xanthine plus xanthine oxidase. The Kd for [3H]-DHA or [3H]-prazosin binding was increased upon treating the membranes with xanthine plus xanthine oxidase. SOD showed the protective effects on the changes in Bmax and Kd for both [3H]-DHA and [3H]-prazosin binding due to xanthine plus xanthine oxidase. Xanthine, xanthine oxidase, and SOD did not show any significant effects on Bmax and Kd values for the adrenergic receptors.

The data presented in this study indicate that when cardiac sarcolemmal membranes were exposed to oxygen free radicals, Ca2+-pump activity, ATP-independent Ca2+ binding, voltage-dependent Ca2+-channels, and adrenergic receptors functions were affected. Also associated with free radical damage to sarcolemmal membranes in the inhibition of Na+ -K+ -ATPase activity23 Levedev et al24 demonstrated that permeability of membranes to Ca2+ was increased by the lipid peroxidation of phospholipids. Furthermore, Ca2+ uptake of sarcoplasmic reticulum was reduced in the presence of free radicals25 All these mechanisms may lead to the changes in Ca2+ homeostasis in the cell which may result in dysfunction of the myocardium.

REFERENCES

1. KLONER RA, DeBOER LVW, DARSEE, JR, INGWALL JS, BRAUNWALD E: Recovery from prolonged abnormalities of canine myocardium salvaged from ischemic necrosis by coronary reperfusion. Proc Natl Acad Sci USA 1981; 78: 7152

2. ZWEIER JL, FLAHERTY, JT, WEISFELDT ML: Direct measurement of free radical generation following reperfusion of ischemic myocardium. Proc Natl Acad Sci USA 1987; 84: 1404

17. KANEKO M, SINGAL PK, DHALLA NS: Alterations in heart sarcolemmal Ca2+-binding activi-
ties due to oxygen free radicals. Basic Res Cardiol 1990; 85: 45

18. KANEKO M, LEE SL, WOLF CM, DHALLA NS: Reduction of calcium channel antagonist binding sites by oxygen free radicals in rat heart. J Mol Cell Cardiol 1989; 21: 935

19. FREEMAN BA, CRAPO JD: Biology of disease; free radicals and tissue injury. Lab Invest 1982; 47: 412

20. DHALLA NS, PIERCE GN, SINGAL PK, BEAMISH RE: Calcium movement in relation to heart function. Basic Res Cardiol 1982; 77: 117

25. OKABE E, HESS ML, OYAMA M, ITO H: Characterization of free radical-mediated damage of canine cardiac sarcoplasmic reticulum. Arch Biochem Biophys 1983; 225: 164

Japanese Circulation Journal Vol.55, September 1991