The Studies of Cell Damaging and Cell Growth Factors which Induce Cardiomyopathy

HIDEAKI KAWAGUCHI, M.D., MIKAKO SHOKI, M.D., HITOSHI SANO, M.D.
TOSHIYUKI KUDO, M.D., HIROFUMI SAWA, M.D.
HIROSHI OKAMOTO, M.D., YOSHIITO SAKATA, M.D.
AND HISAKAZU YASUDA, M.D.

We demonstrated that phosphatidylinositide-specific phospholipase C (PLC) activity was greater in cardiomyopathic hamster hearts (BIO 14.6 and BIO 53.58) than in hamster controls (F1b). Inositol trisphosphate (IP_3) production was markedly greater in both of the cardiomyopathic hamsters, BIO 14.6 and BIO 53.58. We have also determined the sarcolemmal reticulum (SR) function of heart. Calcium uptake into SR markedly increased in BIO 14.6. On the other hand, it significantly decreased in BIO 53.58 compared with F1b. It is well known that IP_3 stimulates calcium release from SR. In BIO 14.6, calcium release from SR stimulated by IP_3 increased, but its effect decreased in BIO 53.58 compared with F1b. These results suggest that PI response may produce high intracellular calcium levels in both BIO 14.6 and BIO 53.58 myocytes. In addition, in the BIO 53.58 hamster the sarcolemmal reticulum deteriorate in function. It was concluded from these results that a prolonged high intracellular calcium level may lead to the death of BIO 53.58 myocytes.

The expression of angiotensinogen mRNA was observed in the hamster heart. There was no differences in its expression level between F1b, BIO 14.6 and BIO 53.58. There was no effect of ages on its expression in these hamster hearts. We have also determined the distribution of angiotensinogen in these hamsters. At 4 weeks of age, the immunohistochemical study revealed that angiotensinogen was widely distributed in subendocardium in these hamsters. There was no difference in its distribution between F1b, BIO 14.6 and BIO 53.58. But at 20 weeks old of age its immunoreactivity decreased in BIO 53.58. There was no effect of age on its reactivity in F1b and BIO 14.6.

We have detected angiotensinogen in heart, but its role is still not clear. A further study should be done to clarify its role in cardiac hypertrophy and cell damage. (Jpn Circ J 1992; 56: 1037–1044)

Syrian cardiomyopathic hamsters (BIO 14.6 and BIO 53.58) display hereditary abnormalities of the cardiac and skeletal muscles which are inherited as an autosomal recessive trait! BIO 14.6 cardiac involve-

ment results in initial myocardial hypertrophy that is followed by cardiac dilatation and death from congestive heart failure? It is thought the cardiomyopathic hamster provides a useful model of human cardiac diseases such as hypertrophic cardiomyopathy.

Many hormones and neurotransmitters stimulate the breakdown of plasma membrane inositol phospholipids by the media-

Key words:
Phosphatidylinositide-specific phospholipase C
Inositol-(1, 4, 5) trisphosphate
Inositol trisphosphate kinase
Inositol trisphosphate phosphatase

Department of Cardiovascular Medicine, Hokkaido University School of Medicine, Sapporo 060, Japan
Mailing address: Hideaki Kawaguchi Department of Cardiovascular Medicine, Hokkaido University School of Medicine, Sapporo 060, Japan

Japanese Circulation Journal Vol.56, October 1992 1037
tion of specific receptors. This so-called phosphatidylinositol (PI) turnover pathway generates two second messengers, inositol-(1, 4, 5)-trisphosphate (IP$_3$) and sn-1, 2-diacylglycerol (DAG). DAG stimulates membrane-bound phospholipid-dependent, Ca$^{2+}$-dependent protein kinase C, while IP$_3$ releases Ca$^{2+}$ from stores in the sarcoplasmic reticulum. The physiological significance of this PI-turnover pathway is not clear in any mammalian cell system. It is controversial whether IP$_3$ stimulates Ca$^{2+}$ release from SR in cardiac myocytes.

The renin-angiotensin (RA) system plays a role in the regulation of blood pressure and of fluid and electrolyte homeostasis. Renin cleaves angiotensinogen (ang-n) to produce angiotensin I, which is then converted by angiotensin-converting enzyme (ACE) to angiotensin II, the most active pressor substance known. They form the major circulating RA system. Recently, molecular cloning and sequence analysis of complementary DNAs (cDNAs) coding for rat ang-n and human ang-n have provided an opportunity to study ang-n at the messenger RNA (mRNA) level. In the heart, angiotensin II appears to play an important role in cardiac hypertrophy. A clinical study reported that ACE inhibitor (ACEI), which inhibits the conversion of angiotensin I to angiotensin II, caused regression of cardiac hypertrophy. Thus, the tissue RA system may be implicated in cardiac hypertrophy and other cardiac disorders in man. However, little interest has been focused on the possibility of local synthesis of ang-n in human organs, especially in the heart.

In this report, we determined the role of PI-response and cardiac RA system in inducing myocardial cell damage and cardiac myocyte hypertrophy in dilated hamster hearts and hypertrophic cardiomyopathic hamsters.

MATERIALS AND METHODS

Experimental Protocol

Experiments were carried out using male hypertrophic cardiomyopathic hamsters (BIO 14.6) aged 5, 10, 20 and 30 weeks, and age-matched male dilated cardiomyopathic hamsters (BIO 53.58) (Bio Breeders, Fitchburg, Massachusetts) F1b hamsters were used as control and there were 10 animals in each age group.

Cell preparation

Cardiac myocytes from BIO 14.6, BIO 53.58 and F1b hamsters were prepared in phosphate buffer (PB) according to a previously reported method and then cultured.
in Ham's F-10 medium with 10% fetal calf serum (FCS) until use. Freshly prepared cells were maintained at 37°C in a humidified 5% CO₂/95% air atmosphere. Cells were then subcultured for assay in 35-mm dishes at 3 × 10³/dish in 1 ml of PB containing 1 mM CaCl₂ and used within 2 h.

Phospholipase C activity

For the determination of the cellular phospholipase C activity, cells (1 × 10⁵) were first labeled with 5 μCi of [³H]myoinositol, [³H]choline chloride, or [³H]ethanolamine. Labeling was performed for 24 h in PB with 0.3% FCS, after which cells were washed three times with PB. Cells were then incubated with the indicated concentrations of NE, 5 mM 2, 3-diphosphoglyceric acid (2, 3-DPG; this concentration inhibited the dephosphorylation of IP₃ and IP₄ by 98%), and 10 mM LiCl for the indicated periods in the presence of 1 μM metoprolol, and then terminated with chloroform/methanol (2:1, v/v). Phospholipids were fractionated by TLC using a chloroform/methanol/acetic acid/water solvent system (50: 30: 8: 4, v/v). For the separation of polyinositol-phosphatides, the aqueous phase was applied to an AG1 × 8 column in format form (100—200 mesh; Bio-Rad), and inositol phosphates were separated by an ammonium gradient system (0.2—1.2 M) plus 0.1 M formic acid. For a more detailed analysis, including the separation of inositol phosphate isomers, samples were filtered and separated by high-performance liquid chromatography (Whatman Partisol 10 SAX anion-exchange column with a guard column) using a gradient of ammonium formate and phosphate. The release of IP₃ was also determined by using an IP₃-binding protein system (myoinositol-(1, 4, 5)-trisphosphate assay system, Amersham, UK).

Calcium release from sarcoplasmic reticulum

Left ventricles were minced and homogenized for 60 seconds by a polytron homogenizer (PT-19, Kinematica, Switzerland).
ing 400 μg of sarcoplasmic reticulum in a final reaction mixture of 400 μl in cytosolic buffer (KCl 120 mM, NaCl 10 mM, KH₂PO₄ 1 mM, NaHCO₃ 5 mM, HEPES 10 mM, pH 7.1), MgCl₂ 5 mM, and ATP 5 μM for 10 min. The final free Ca²⁺ concentration was calculated according to the method of Fabiato and Fabiato²⁴ and adjusted to 1 μM. In Ca²⁺ release experiments, IP₃ was added to the 100 μl-aliquot of ⁴⁵Ca²⁺-loaded sarcoplasmic reticulum in the presence of 1 mM EGTA, 10 mM LiCl and 5 mM 2, 3-diphosphoglycerate (2, 3-DPG; this concentration of 2, 3-DPG inhibited the dephosphorylation of IP₃), and immediately mixed with the reaction medium. Ca²⁺ release started from this time. The experiments were carried out at 37°C. After the indicated incubation periods, the incubation mixture was filtered through a 0.45 μ Millipore filter, washed three times with 3 ml of cytosolic buffer, and counted in 5 ml of Ready Gel. The zero-time Ca²⁺ content of the sarcoplasmic reticulum was obtained by diluting the original incubate and immediately filtering it through a Millipore filter. The total sarcoplasmic reticulum calcium content was 388 ± 22 nmol/mg protein. There was no differences between the two groups for the calcium content of sarcoplasmic reticulum.

Northern blot hybridization

RNA was denatured with formaldehyde at 65°C for 15 min and was subjected to 1.0% agarose gel electrophoresis (Seakem GTG agarose, FMC Bioproducts). RNA was transferred to a nylon membrane (Hybond-N+, Amersham International, UK) by capillary action with 10×SSC over night and was fixed with 0.05 M NaOH, then washed with 5×SSPE. The membranes used for transfer were prehybridized at 42°C for 1 h, in a solution consisting of 50% formamide, 5×SSPE, 5×Denhardt’s solution, 0.1% SDS, 200 μg/ml denatured salmon sperm DNA, and 5% dextran sulfate; then they were hybridized over night at 42°C in the same buffer, to which radio-labeled ang-n cDNA (generous gift from A. Fukamizu, University of Tsukuba) had been added. After hybridization, the membranes were exposed to X-ray film (Kodak X-OMAT, Eastman Kodak Company, Rochester, NY) for 5 days. And the same membranes were hybri-

Japanese Circulation Journal Vol. 36, October 1992
dized α-actin cDNA after rehybridization. The angiotensinogen mRNA expression was also determined by the ribonuclease protection assay (RPA) method.

Immunohistochemical techniques

The ABC method was applied to the paraffin-embedded tissues after fixation with 10% formalin and 4% paraformaldehyde/0.1 M phosphate buffer. Briefly, after deparaffinization with xylene and hydration with ethanol, the sections were treated with goat serum and 1% H$_2$O$_2$ methanol for quenching of endogenous peroxidase activity. Then the sections were incubated with the primary antibody of ang-n (generous gift from A. Fukamizu, University of Tsukuba) at dilutions of 1:800 at 4°C over night. After washing with PBS, they were incubated with a second antibody (biotinylated goat antimouse immunoglobulins; Biogenex, San Ramon, CA, USA). Then the sections were reacted with the ABC (Elite ABC kit, Vector Lavoratories Inc., Vectastain) and visualized with 3-3'-diaminobenzidine tetrahydrochloride.

Statistical Analysis

Six experiments in triplicate were analyzed in all the studies, and results were expressed as the mean±SEM. Statistical significance was determined using the previously described method (ANOVA) and taking p<0.05 as the limit of significance.

RESULTS

The heart weight/body weight was higher at 5–20 weeks of ages in BIO 14.6 hamsters than in Flb hamsters. There was no difference at 30 weeks of age between both hamsters. On the other hand, it was lower in all age groups of BIO 53.58 hamsters than in Flb hamsters (Fig. 1).

Polyphosphoinositide-specific phospholipase C activity was studied. Myocardial cells isolated from 10-week-old BIO 14.6, BIO 53.58, and Flb hamsters were incubated with the indicated concentrations of NE and 1 μM metoprolol in the presence of 10 mM LiCl and 5 mM 2, 3-DPG for 90 sec. NE induced the hydrolysis of PI, but lysoPI accumulation was not observed (Fig. 2). This indicates that phospholipase has substrate specificity towards PI, and suggests that phospholipase C was activated but not phospholipase A$_2$. There was no significant difference between the BIO 14.6 and BIO 53.58 hamsters. As shown in Fig. 3, the PIP$_2$-PLC activity of isolated cells was markedly enhanced by NE stimulation in both types of cardiomyopathic hamster. IP$_3$ release was enhanced by NE from the age of 5 weeks to 30 weeks. At this stage, the release of IP$_3$ in
response to NE was significantly activated in both BIO 14.6 and BIO 53.58 hamsters. This acceleration of PI-turnover may affect Ca\(^{2+}\) flux into cells. As previously reported, the basal intracellular calcium concentration without NE stimulation was higher in BIO 53.58 hamsters than in BIO 14.6 and F1b hamsters. Intracellular calcium levels in BIO 53.58 hamsters aged 5–20 weeks were significantly higher than those of age-matched BIO 14.6 hamsters, but there were no significant differences between two types of cardiomyopathic hamsters at 30 weeks of age. The sarcoplasmic reticulum (SR) function of cardiomyopathic hamster hearts were investigated. As shown in Fig. 4, calcium uptake into SR increased in BIO 14.6, but decreased in BIO 53.58. The addition of IP\(_3\) to \(^{45}\)Ca\(^{2+}\) preloaded sarcoplasmic reticulum from F1b, BIO 14.6 and BIO 53.58 in a medium containing 1 \(\mu\)M free Ca\(^{2+}\) induced a transient release of Ca\(^{2+}\) and achieved a maximum effect at 10 \(\mu\)M IP\(_3\) for 1 min-incubation at 37 °C. The Ca\(^{2+}\) release from sarcoplasmic reticulum in BIO 14.6 was significantly higher than in F1b. On the other hand, calcium release from SR decreased in BIO 53.58 (Fig. 5).

The expression of cardiac angiotensinogen mRNA was determined by northern blot analysis and RPA. Cardiac angiotensinogen mRNA was expressed in these animals. There was no difference in its expression between these hamsters (Fig. 6).

By immunohistochemical study of angiotensinogen, in the heart, intense immunoreactivity was found in the myocardial cells of the atrium. The myocardial cells in the atrium that were adjacent to the endocardium exhibited a stronger reaction than did those near the epicardium. Immunoreactive cells were present in a mottled pattern. In the ventricle, an immunopositive reaction was recognized in the subendocardial layer, but the intensity was weaker than that in the atrium. At 20 weeks of age, the immunoreactivity of angiotensinogen decreased in BIO 53.58. There were no differences with age between F1b and BIO 14.6 (Fig. 7).

DISCUSSION

In our experiment, the accumulations of polyphosphoinositides after stimulation with NE were significantly enhanced in cardiac myocytes of cardiomyopathic hamster. These results suggest the possibility that the enhanced phosphatidylinositol-(4, 5)-bisphosphate-IP\(_3\)-Ca\(^{2+}\) pathways and the DAG-PKC pathway may increase protein synthesis in the BIO 14.6 heart. However, this hypothesis does not explain how myocardial cell damage occurs in BIO 53.58 hamsters. In both animals, the phosphatidylinositol metabolism and the polyphosphoinositide metabolism are enhanced, but
one develops cardiac hypertrophy and the other develops cardiac dilatation. This difference may be partly explained by the cytosolic Ca\(^{2+}\) concentration as reported elsewhere.\(^{25}\) The cytosolic Ca\(^{2+}\) concentration was quite high in BIO 53.58 hamsters aged 4—30 weeks, but in BIO 14.6 hamsters, it increased at 30 weeks of age. As mentioned above, an increase in the PI-response may raise the cytosolic Ca\(^{2+}\) level, but in BIO 14.6 hamsters aged 4—20 weeks it was still lower than in BIO 53.58 hamsters. These results suggest that the intracellular calcium handling is seriously disturbed from a very young age in BIO 53.58 hamsters. On the other hand, it appears to be well-preserved in the early stages of hypertrophic cardiomyopathy in BIO 14.6 hamsters. Our results supported this hypothesis. Calcium uptake into sarcoplasmic reticulum decreased in BIO 53.58 hamsters compared to BIO 14.6 and F1b hamsters.\(^{26}\) These results show that \(\alpha\)\(_\)adrenergic receptor stimulation may cause intracellular calcium overload because of deterioration of sarcoplasmic reticulum function in BIO 53.58 hamsters.

In the cardiac renin-angiotensinogen system, angiotensin II stimulates PI response in myocytes. In these cardiomyopathic hamsters, angiotensinogen is present in the heart. The immunoreactivity of angiotensinogen in BIO 53.58 decreased, but its role is not still clear. A further study should be done to clarify its role on cardiac hypertrophy and cell damage.

Acknowledgment

This research was supported in part by a Research Grant for Cardiomyopathy from the Ministry of Health and Welfare of Japan and Grants-in-Aid for Scientific Research from the Ministry of Education, Science and Culture of Japan, 01870041, 02404042, and 02454250.

REFERENCES

8. DUBYAK GR, COWEN DS, MEULLER LM: Activation of inositol phospholipid breakdown in HL 60 cells by P2-purinergic receptors for extracellular ATP. J Biol Chem 1988; 263: 18108—18117
16. KAGEYAMA R, OHKUBO H, NAKANISHI S: Primary structure of human preangiotensinogen deduced from the cloned cDNA sequence. Biochemistry 1984; 23: 3603—3609
17. KUNAPULI SP, KUMAR A: Molecular cloning of human angiotensinogen cDNA and evidence for the presence of its mRNA in rat heart. Circ Res 1987; 60: 786—790
24. FABIATO A, FABIATO F: Contractions induced by a calcium-triggered release of calcium from the sarcoplasmic reticulum of single skinned cardiac cells. J Physiol (London) 1975; 249: 469—495