各種ストレス刺激に対する心血管細胞の防御機構とその破綻

Protective effects of thioredoxin system on cardiovascular cells affected by oxidative stress

産業医科大学 健康開発科学研究院
池田 正春・南里 宏樹・姫野 悦郎・賀来 有未
応用生理研究室
平川 暁久

University of Occupational and Environmental Health, Japan, Department of Health Development. Masaharu Ikeda, Hiroki Nanri, Etsuro Himeno, Yumi Kaku. Department of Systems Physiology. Haruhisa Hirakawa

[はじめに]
生体は絶えず色々なストレスに曝されており、そのためにこれらのストレスに対する様々な防御機構を動員し生体の恒常性を維持し生命を守っている。
心臓、血管系をはじめとして生体の各組織は、生理的、および病理的状態において常に生じている活性酸素に曝されているが、この酸化的ストレスによる細胞機能の障害は生体の正常な活動にとって重大な悪影響を及ぼす。特に心臓、血管系における酸化的障害は、心衰、高圧下障害や動脈硬化などの病団として循環器疾患の形成に深く関わり、また心・血管系に対するストレスは直接生命に関わることからその防御機構は特に重要と思われる。図1に示すように細胞は酸化的ストレスに対して種々の防御機構を備えているが、この防御機構についてのこれまでの研究は、GlutathioneやTocopherolなどの抗酸化物質や、Superoxide Dismutase (SOD), Glutathione Peroxidase および Catalase などの抗酸化酵素による活性酸素の消去機制を取り扱ったものがほとんどであった。本研究では、心臓、血管系の酸化的ストレスに対する細胞防御機構の一つとして、血管内皮細胞における酸化的障害蛋白質の再生機構に注目し、蛋白質チオール基酸化還元酵素としての触媒活性を有する Thioredoxin (Trx), Protein Disulfide Isomerase (PDI) などの Protein Thiol/Disulfide 交換酵素系による障害蛋白質の再生反応について検討した。更に組織レベルで生体内のこれらの防御機構を調べるためラットを低酸素条件下に曝した時の Thioredoxin や PDI などの再生系蛋白質の酸化ストレスによる誘導について検討し、また摘出心臓のラベルドール標本を用い、低酸素前処置の心臓保護作用に対する影響を調べた。

酸化的ストレスと再生・修復系

図1 酸化的ストレスと再生・修復系

Japanese Circulation Journal Vol. 58, Suppl. IV, 1995
1. Thioredoxinによる酸化的障害酵素の修復

グリセリンアルデヒド-3-リン酸脱水素酵素（GA 3 PDH）、グルコース-6-リン酸脱水素酵素（G 6 PDH）は、ともに活性部位にチオール基をもつ、解橋系の主要酵素としてエネルギー代謝にも重要な役割を果たしている。

酸化的障害とその修復・再生をみるとためにこれらの酵素をレポーター酵素として用いた。

0.3 mM H₂O₂ に短時間さらすことにより、GA 3 PDH を 65%、G 6 PDH を 60% それぞれ失活させ、これらの酵素を再生反応の基質（レポーター酵素）として用いた。失活したレポーター酵素を Trx + Trx Reductase + NADPH と共にインキュベートすると、ともに 30 分で 90% 以上の活性の再生が認められた。しかし還元型 Trx 単独では再生的程度は弱く、また NADPH + Trx Reductase のみでは再生反応は認められなかった。図 2

次に生体での生理的濃度の Thioredoxin が再生能力を有するか否かをみるために、再生反応における Thioredoxin の用量依存性の検討を行った。

ウシの正常細胞内 Thioredoxin 濃度は 10 μM 程度と考えられるが、0.125 μM Thioredoxin Reductase および 0.25 mM NADPH 共存下に 37℃で 20 分インキュベートしたところレポーター酵素の活性が見られることから、Thioredoxin の生理的濃度の範囲では完全に活性の再生が認められた。

次に Thioredoxin 自体及び Thioredoxin Reductase 自体の酸化的ストレスに対する抵抗性について調べるため、12 mM までの濃度の H₂O₂ に 5 分間さらし、これらの酵素活性に与える影響を調べた。

その結果、GA 3 PDH は H₂O₂ 濃度に用量依存的に失活し、ときに 12 mM では殆ど完全に失活したが、Thioredoxin 及び Thioredoxin Reductase は殆ど失活がみとめられなかった。この結果は、Trx, Trx Reductase は、活性部位にチオール基があるにも関わらず一般的の酵素にくらべ酸化的ストレスに対する抵抗性を有していることを示唆している。

2. 細胞レベルでの Thioredoxin 系による酸化的障害酵素の修復・再生

次に内皮細胞の lysate を用い、Cell Free 系にて Thioredoxin 系の再生能について検討した。

まず予め H₂O₂ で処理した内皮細胞の lysate が内因性 GA 3 PDH の活性を修復・再生するか否かを検討した。H₂O₂ 処理により内皮細胞の GA 3 PDH は不活性化されたが、lysate 中に NADPH を添加すると、incubation 時間の経過とともに活性の回復が認められた。

これに対し Thioredoxin に対する抗体で lysate を前処理しておくとレポーター酵素活性の再生は阻害された。

次に内皮細胞における酸化的障害蛋白質の再生の再現に Thioredoxin 系が関与しているか否かをみるために Thioredoxin Reductase の阻害剤である 13-cis-retinoic acid で細胞を処理してその影響を調べた。

無傷血管内皮細胞を H₂O₂ で処理した時の GA 3 PDH の活性の回復を経時的に調べると、13-cis-retinoic acid で予め前処理した細胞ではコントロールに比べ GA 3 PDH の酵素活性回復の阻害が認められる、この GA 3 PDH の再生に Thioredoxin 系が関与していることが裏付けられた。

次に Oxidant で前処理後、血管内皮細胞内の蛋白質チオール基酸化還元酵素系（Thioredoxin, PDH など）の含量を Immunoblotting 法にて定量的に測定し
ストレスと突然死（シンポジウム I）

比較検討した。Thioredoxin や PDIF は H_2O_2 やその他のオキシダント処理で 20-30 時間後に約 2 倍に増加したが、この増加は Actinomycin D や Cycloheximide で阻害されることから mRNA や蛋白質の合成を介したストレス誘導によるものと考えられた。

以上 in vitro 系、cell free 系、intact 細胞を用いた実験結果は Thioredoxin 系をはじめとした Protein Thiol/Disulide 交換酵素系が酸化的ストレスに対する防御機構として働き、酸化的障害タンパク質の再生・修復反応に重要な役割を果たしているものと考えられる 24–41.

3. 低酸素ストレスの不整脈に及ぼす効果

次にラットを低酸素状態にさらし、低酸素ストレスがストレス蛋白質の誘導及び虚血－再灌流時の再灌流不整脈出現に及ぼす影響を検討した。

ラット（体重 280–320g）を低酸素状態（空気：窒素ガス = 1：1）に 10 分間置いた後、正常 room air に戻し 10 分後に再び低酸素下に戻した。この低酸素ストレスを 3 回繰り返し、低酸素ストレス前処置群とし、低酸素ストレスを加えない群をコントロール群とした。

20 時間後に、屠殺し心室摘出後、左心室を 0.1% TritonX100 加 Hepes 循環溶液に後ホモジェナイズし、遠心上清を 15% SDS ポリアクリルアミド電気泳動を行った。

続いて Immunoblotting 法にて Thioredoxin の定量を行ったところ、低酸素ストレス前処置群ではコントロール群に比較し、約 3 倍の Thioredoxin 発現の増加を認めた。この Thioredoxin の増加は、繰り返し行った低酸素ストレスが結果的には相対的に酸化的ストレスを来したために、in vitro の内皮細胞系と同様に、心筋に Thioredoxin の発現の亢進を来たしたものと考えられる。

次に予め、繰り返し低酸素ストレスに曝したラットより、低酸素処置 20 時間後心室を摘出しラジカル騒標本を作製し、灌流停止・再灌流後の不整脈出現への影響を検討した。

まずラットを麻酔下、人工呼吸器にて換気下に心筋を摘出しラジカル騒装置に装置し（60 秒以内）、Krebs-Henseleit 灌流液にて灌流した。心電図、心拍数（230–270 拍/分）、左室圧（85–90 mmHg/5–15 mmHg）、灌流量（6–10 ml/min）が安定した時点で （装置より 20 分後）で、灌流の完全停止（Global Ischemia）を行った。

灌流停止と同時に左室圧の急激な低下と、心拍数の減少、心電図にて R 波の減高、ST-T 波の上昇を認めたが期外収縮は認めなかった。やがて 6–13 分後に完全な心停止を来たした。

30 分の灌流完全途絶後の後に 85–90 cm H_2O の灌流圧にて再灌流を行った。

再灌流と同時に心室は第 1 番に拍動を開始し左室圧の上昇を認めたが、再灌流量 0–5 分の間に、期外収縮のほか、心室性頻拍（Ventricular Tachycardia, VT）、心室細動（Ventricular Fibrillation, VF）などの多彩な不整脈の出現を認めた。

心室性頻拍や心室細動が 30 秒以内に停止し、正常律動に復したものを一過性心室性頻拍（Transient VT）、一過性心室細動（Transient VF）とし、それ以上持続したものをそれぞれ、持続性心室性頻拍（Sustained VT）、長時間持続心室細動（Long lasting

Global Ischemia/Reperfusion Arrhythmia in the Isolated Rat Heart

図 3 抗チオトリドキシン抗体による血管内皮細胞 lysate 中の再生反応の阻害

図 4 摘出ラット心室における Global Ischemia/Reperfusion 時の左室圧（LVP）、心電図（EKG）の時間的変化（上段：コントロールラット、下段：低酸素ストレス前処置群）

Anti-Trx antibody inhibits regeneration of inactivated GAPDH in bovine endothelial cell lysate

Japanese Circulation Journal Vol. 58, Suppl. IV, 1995
VF）として結果の解析を行った。

コントロール群では、8例中全例でVTやVFの出現がみられ、最終的に長時間持続心室細動を来たした。なお図4に上段にそのうちの1例を示す。

一方低酸素ストレスの前処置を受けた低酸素ストレス群では、1例に長時間持続VFを認めたものの、他6例には持続性VTや長時間持続VFは認めなかった。図4下段にVT、VFを生じなかった低酸素ストレス前処置の一例を示し、灌流停止/再灌流不整脈の内訳は、表1に示すとおりである。なお本実験系においては、灌流液を回収し、Creatine Phosphokinase（CPK）やLactate Dehydrogenase（LDH）を一定時間毎に測定し、全例にCPK及びLDHの上昇を認めた。しかし、不整脈発生時には本実験系では一定流量が得られず、これらの逸脱酵素を指標としたコントロール群、低酸素ストレス群の両群間の組織損傷の程度の比較はできなかった。

表1
Reperfusion Arrhythmias after Global Ischemia in Langendorff Preparation of Control and Hypoxia-treated Rats

<table>
<thead>
<tr>
<th>Arrhythmia</th>
<th>Control (n=8)</th>
<th>Hypoxia-treated (n=7)</th>
</tr>
</thead>
<tbody>
<tr>
<td>No VT or VF</td>
<td>0</td>
<td>1</td>
</tr>
<tr>
<td>Transient VT only</td>
<td>1</td>
<td>1</td>
</tr>
<tr>
<td>Transient VF only</td>
<td>1</td>
<td>2</td>
</tr>
<tr>
<td>Transient VT + Transient VF</td>
<td>0</td>
<td>2</td>
</tr>
<tr>
<td>Sustained VT + Long lasting VF</td>
<td>4</td>
<td>1</td>
</tr>
<tr>
<td>Long lasting VF</td>
<td>2</td>
<td>0</td>
</tr>
</tbody>
</table>

低酸素ストレス前処置群では低酸素処理、room air と繰り返すことにより、normoxicな状態が相対的に酸化的ストレスを生体内与え、Protein Thiol/Disulfide 交換酵素系の酵素の誘導を来たしたものと考えられる。従来の報告では再灌流不整脈の発生要因の一つとしてフリーラジカルがあげられていたが、低酸素ストレス前処置群でVTやVFなどの不整脈の出現が少ないことは、その一部に誘導された障害蛋白質再生系が関与することが示唆される。

【まとめ】

生体はストレスに曝された場合種々の防御機構を動員し抵抗性を獲得し障害を最小限に抑えようとする。本研究ではストレスの血管内皮細胞に対する影響が生体がストレスを受けたときの臓器（心室）に対する影響をみた。
はじめに示した修飾酵素を用いたin vitro系、Cell-Free系、無傷細胞系の各レベルの実験の結果は、Thioredoxin、Protein Disulfide IsomeraseなどのProtein Thiol/Disulfide 交換酵素系が心・血管系細胞における酸化的ストレス防御機構として酸化的障害蛋白質の再生反応に重要な役割を果たしていることを示している。

心臓においては短時間の先行する虚血は心筋に対し虚血耐性を生じ心筋壊死の縮小効果をもたらし、ischemic preconditioningとよばれているので、ischemic preconditioningのメカニズムとしてAdenosine、活性酸素消去系酵素（SOD, Catalaseなど）の活性の上昇などが挙げられ、またHeat shock proteinsも関与するとの報告がある。

本研究においても低酸素ストレス前処置群でVTやVFなどの不整脈の出現が少ないことは、ストレスにより誘導されたThioredoxin系のような障害蛋白質再生系をもそのメカニズムの一端を担っているものと考えられる。

このような再生機構に関与する酵素系の分子レベルでの破綻は、虚血再灌流障害のような活性酸素による細胞障害の発生、進展、さらには、細胞死・個体死とも深く関わっているものと思われる。

【参考文献】


Japanese Circulation Journal Vol. 58, Suppl. IV, 1995