155. 関節の肢位による筋活動の
変化について（第2報）
—二関節における肢位変化
が疲労に及ぼす影響—

【キーワード】
多関節肢位・疲労・筋電図

関東労災病院
林 宏樹・加賀谷善教・村井 貞夫

日本体育協会スポーツ診療所
川野 哲夫

【はじめに】上肢運動は肩、肘関節の状態により効果を著しくする。これらを可能にする各関節の筋活動は随意的筋収縮と肢位変化及び時間経過による疲労現象により影響を受ける。第24回本学会に於て我々は、体幹の肢位変化が肩関節屈曲等尺性収縮筋活動に疲労の影響を及ぼすことを報告した。今回、肘関節に注目し屈曲角度を変化させた二関節等尺性収縮筋活動と疲労に与える影響を筋電図および筋電屈曲波形を用いて観察し、この結果を示す知見を得て報告する。

【対象と方法】対象は健康な成人男性7名であった。年齢23.3±2.0才で、測定方法は椅子に座り背後脇位にて右側姿勢位に3kgの重錠を着用し、右肩関節屈曲30度で肘関節を屈曲30度に保つ30度屈曲位と、同様に肘関節を90度に保つ90度屈曲位とした。予備実験で筋放電が明瞭に確認できた前腕回外位を規定するため手技を30度屈曲位にて上方、90度屈曲位にて下方とし、なお測定時間は各々2分間である。

被験筋は肩関節、肘関節屈筋の上腕二頭筋（BB）、肩関節屈筋の三角筋前部線維（DA）と背屈筋である三角筋中央線維（DM）で、全て右側とした。

筋電図の採取は、被験筋から表面電極導出導出し用プリペア（NEC三栄）で増幅、Fデータレコーダー（TEAC MR30）に磁気記録した。各筋とも開始後約5秒、30秒、90秒から波形が安定した6秒間を採用した。

筋電図の解析は記録された波形をコンピュータに入力しAD変換した後筋電積分値（積分値）を求め、各筋の活動の割合を知るため3筋の筋電積分値の総和に対する各筋の積分値（積分値の割合）を算出した。更に高電流延長変換により平均パワー周波数を得た。

また、肩関節から背屈までの距離（l）と肩関節を通過する水平線とのなす角度（θ）を求め、肩関節屈伸位から背屈までの水平距離（lcosθ）を計算した。

以上、得られた値について肩関節屈曲角度の違いについて比較検討した。

【結果】
①積分値：図に示す通り30度屈曲位ではDAが大きくなり90度屈曲位ではBBが大きい傾向であったが、5秒のBBのみ30度屈曲位で比較的小さいかった。肢位による比較では5秒のDAで90度屈曲位が大きく、他は30度屈曲位が大きいのが差がなかった。（図参照）
②積分値の割合：両肢位ともほぼ一定の割合を示したが、30度屈曲位のBBのみ25%と小さな値であった。
③平均パワー周波数：全筋、両肢位で経時的に減少し、一定周波域に移行した。肢位、筋の間には特徴的な傾向は認めなかった。
④水平距離：30度屈曲位では44.8±3.3cmであり、90度屈曲位では32.5±2.2cmであった。
⑤測定肢位保持は30度屈曲位では全例可能であったが、90度屈曲位では3例が2分以前に不可能となった。

【考察】本実験は肘関節の肢位変化が肩関節屈曲位保持時の筋活動に与える影響を疲労という観点から検討したものである。2つの肢位を比較すると、坐位と肩関節の水平距離は30度屈曲位の方が約30%長く、肘関節の屈曲位がT Accelerometerの周波数をみると明らかに30度屈曲位が大きい。これは3名が2分間保持できなかったにも含め疲労発生が顕著なことは特徴である。

30度屈曲位は90度屈曲位に比べDMの積分値は終端増大し、BB、DAは5、30秒でないが増加であり、90秒で増大し、特にBBは著明であった。これはBBが30度屈曲位では肘関節の位置が屈曲トルクを必要とし、肘関節の筋活動だけでは解決ができない。しかしBBの筋放電が5秒で肢位による差がなく、経時にDA、DM同様後の筋放電が著しく増大したこと、両関節でDBは明らかに単関節筋であるDAとは異なり、これは肩関節の屈曲を保持する活動が低く、経時に他筋同様主動作筋の役割が大きくなくななることが考えられる。

今後、負荷量や二関節間の他の要素を変化させ更に検討していきたい。