Prevention of gamma motoneuronal loss in Otsuka Long–Evans Tokushima Fatty rats by exercise training

Muramatsu Ken①, Tamaki Toru①, Ikutomo Masako①, Niwa Masatoshi②, Sasaki Sei-Ichi③, Ishiguro Tomoyasu①

1) Department of Physical Therapy, Health Science University,
2) Department of Occupational Therapy, Kyorin University,
3) Center for Medical Sciences, Ibaraki Prefectural University of Health Sciences

key words Diabetic polyneuropathy · motoneuron · exercise training

[Purpose]

We recently reported that there is a significant (P<0.01) decrease in the absolute number of gamma motoneurons in type 1 and type 2 diabetic rats. However, the effect of exercise training on gamma motoneuronal loss is unknown. The purpose of this study was to investigate the effect of 20 weeks of exercise training on motoneuronal loss in type 2 diabetic rats, i.e., the Otsuka Long–Evans Tokushima Fatty (OLET) rats.

[Methods]

OLET rats were divided into the exercise training group (Ex-OLET, n = 6) and the sedentary group (Sed-OLET, n = 6), whereas the Long–Evans Tokushima Otsuka (LETO) rats were used as the control group (Cont-LETO, n = 6). Ex-OLET rats were trained on a treadmill (20 m/min, 6 times/week, starting at 25 weeks). Alterations in the number and size of medial gastrocnemius (MG) motoneurons were studied in the MG motor nucleus for each group at 45 weeks. The intraperitoneal glucose tolerance test (IPGTT) was conducted to assess glucose metabolism in the rats.

[Results]

IPGTT indicated that exercise training improved glucose tolerance in the Ex-OLET group. The Sed-OLET group had significantly fewer motoneurons as compared with the Cont-LETO group (P<0.01); however, there was no difference between the Ex-OLET and Cont-LETO groups. The distribution of average soma area in the MG motoneurons of all the groups was bimodal; cells with larger areas were presumed to be alpha-motoneurons, and those with smaller areas were presumed to be gamma-motoneurons. As compared with the Cont-LETO group, the number of gamma motoneurons was reduced by almost half in the Sed-OLET group but was preserved in the Ex-OLET group.

[Discussion]

Our results indicate that exercise training not only improves glucose tolerance but also prevents gamma motoneuronal loss in type 2 diabetic rats.