Prior disturbance increases activation
in the right inferior frontal gyrus (IFG) during competition

○ Tao Liu1, Hirofumi Saito1, Misato Oi1, Shuang Meng1, and Victor Alberto Palacios1
1Department of Cognitive Informatics, Graduate School of Information Science, Nagoya University, Japan
2Department of Psychology, Sun Yat-Sen University, China
key words: Cooperation and Competition, Prior experience, Turn-taking interaction

Introduction

Interpersonal interaction is defined as an individual’s “simultaneous
or sequential actions that affect the immediate and future outcomes of
the other individuals involved in the situation” (Johnson and Johnson,
2005). Studies of interpersonal interaction are classified into concurrent
interaction and turn-based interaction. Ample studies have examined
neural mechanisms of bodily synchrony underlying concurrent
interaction such as finger-movement imitation, and demonstrated that
the right frontal cortices are critical for concurrent cooperation (not
for concurrent competition). However, bodily synchrony is not necessary
for turn-based actions. Instead, mental synchrony between two persons
is required to understand the partner’s intention in turn-based
interactions such as predicting tactical move at chess.

Previous studies have revealed that understanding other person’s
actions and intentions relies on prior experience to hold representations
of one’s own experience and that of others. The right inferior frontal
gyrus (IFG) is involved in understanding of others’ intention and
empathy with others’ emotion. The present study aimed to examine
how prior experience of role-playing affects an individual’s right IFG
activation during turn-based cooperation and competition.

Method

Participants Twenty students (16 males, 4 females, age: 19.2 ± 1.2
years) in Nagoya University participated for course credit.

Materials and task We used a computerized turn-taking game as in
Decety et al. (2004). Pairs of participants were assigned to either one of
two roles in the game: a Builder taking the initial move to copy a
disk-pattern on a monitor and a Partner taking the second move to aid
the Builder in his/her goal in a cooperative game or to obstruct it in a
competitive game.

The experiment consisted of two sessions. Each session was
composed of eight cooperative and eight competitive games. One
participant played the game as a Builder (B) in the session 1 and
changed the role to the Partner (P) in the session 2, i.e., one player was
B-P and the other player was P-B vice versa.

Apparatus A multichannel NIRS unit (FOIRE-3000/16; Shimadzu,
Japan) was used to simultaneously measure the Builder-Partner pairs’
concentration changes of oxy-Hb (Coxy-Hb) in the bilateral IFG.

Data analysis A linear baseline correction was conducted using the
mean value of Coxy-Hb during the 2 s before each task. The z-scores
were then calculated using the mean value and the standard deviation
during the baseline period.

Results and discussion

We conducted a two-way ANOVA [Role (B-P vs. P-B) × Session (1 vs.
2)] in the cooperation and the competition condition, respectively. Figure 1
shows the mean Coxy-Hb of each participant group in the two conditions.

In the cooperation condition, both the left and the right IFG showed no
significant main effects of Role and Session, and no significant interactions.

In the competition condition, there were no significant main effects of
Role and Session, but significant interactions [F(1,13) = 4.70, p < 0.05, ηp²
= 0.27; F(1,13) = 6.11, p < 0.05, ηp² = 0.32] in the bilateral IFG. The
post-hoc analyses (Bonferroni’ procedure) revealed that in the left IFG
there was no significant difference between two roles (i.e., Builder vs.
Disturber) of the same player in the session 1 and the session 2. The
Disturber shows significantly higher activation than the Builder in the
session 1 [F(1,13) = 7.66, p < 0.05, ηp² = 0.37], but not in the session 2.

Importantly, in the right IFG, B-P showed significantly higher activation
when (s)he played as the role of Disturber in the session 2 than when (s)he
played as the role of Builder in the session 1 [F(1,8) = 5.53, p < 0.05, ηp²
= 0.41], but P-B did not. There was no significant difference between
the Builder and the Disturber in both the sessions 1 and 2.

These results suggest that prior experience of being disturbed allows one
to disturb others more skillfully. That is, B-P had the experience of being
disturbed while attempting to build. Thus, B-P could draw from that
experience to more tactically disturb in the subsequent competition with
P-B. The better understanding of the Builder’s position increased the right
IFG activation of B-P when (s)he was meant to disturb in the session 2.

Fig. 1. Mean Coxy-Hb of each participant group in the cooperation and
competition conditions. Error bars represent standard deviation. Numbers
in the parentheses indicate the number of the Builder and the Partner
(Cooperator or Disturber) in the corresponding session, respectively. *
indicates p < 0.05.