セメントの品質規格の改正の概要

市川 牧彦*1・大森 啓*2・安斎 浩幸*3

概要 本稿では、2009年11月20日に改正公告された、セメントの品質に関連する五つの日本工業規格について、それらの改正点の内容を紹介する。

キーワード：ポルトランドセメント、高炉セメント、シリカセメント、フライアッシュセメント、エコセメント、JIS、品質

1．はじめに

昨年11月、セメントの品質を規定する次の五つの日本工業規格（以下、JISと略す）が改正された。

JIS R 5210 ポルトランドセメント
JIS R 5211 高炉セメント
JIS R 5212 シリカセメント
JIS R 5213 フライアッシュセメント
JIS R 5214 エコセメント

今回の改正は工業標準化法第15条に基づき、日本工業規格の制定、改正および確認から少なくとも5年以内に実施される見直しに合わせて、規定内容の全面的な見直しを行うとともに、前回の改正以降の製造技術の多様化を踏まえ、これを阻害しない観点からの製造方法の規定の削除等について検討を行ったものである。

セメントの品質規格の改正にあたり、セメント協会では規格専門委員会において改正の調査・検討を実施し、改正の要案を作成した。その後、長瀬重義氏（愛知工業大学 特任教授）を委員長としてJIS要案作成委員会を組織して、JIS要案の検討・作成を行い、日本工業標準調査会に工業標準の改正の申し出を行った。

本稿はこれらの五つの規格の改正内容について紹介するものである。

2．改正点の概要

今回の改正点とそれに対応する規格を表-1に示す。

3．具体的な改正内容

3.1 製造方法の削除と種類および構成

（1）ポルトランドセメント（JIS R 5210）

旧規格では、“製造方法”の箇条として、“ポルトラン

*1 いかわり・まきのこ/セメント協会 規格専門委員会 委員長（土木学会特別委員会 中央研究所 研究開発1部長 兼 技術開発センター長）

*2 おおもり・ひろし/セメント協会 規格専門委員会 事務局（事務局 高級研究者 所長）

*3 あんざい・ひろゆき/セメント協会 規格専門委員会 事務局

Dセメントは、クリンカーに適量のセッコウを加え、粉砕してつくる”の記述を転用し、粉砕助剤の使用や、今回

の改正で“少量混合成分”と定義された原材料（JIS R 5210:2003）で普通ポルトランドセメントに質量で5%ま

で混合が認められていたセメント製造用石灰石、高炉

スラグ、フライアッシュ、シリカ質混合材）の混合方法

について規定されていた。今回の改正では、少量混合成

分および粉砕助剤が原材料として規定され、これらを含

めたポルトランドセメントの構成を明確にした上で、

“製造方法”の箇条が削除された。

ポルトランドセメントの構成において、今回の改正で

新しく定義された要項は、高強ポルトランドセメントお

よび超高強ポルトランドセメントに、普通ポルトランド

セメントと同様に少量混合成分をセメントに対して質量

で5%以内で混合できるようになったことである。これ

は、高強ポルトランドセメントおよび超高強ポルトラン

ドセメントでは、一部の試料において水先焼きの早い時間

にセメントベーストの転がる場合があり、これを

改善する方法として、これまで普通ポルトランドセメ

ントだけに認められていた少量混合成分を混合することが

有効であることから規定された。

なお、低アルカリ形ポルトランドセメントは、旧規格

では附属書（ポルトランドセメント（低アルカリ形））

で規定されてきたが、今回の改正では特に内容を変更せ

ず本体で規定され、この附属書は廃止された。

（2）高炉セメント（JIS R 5211）

今回の改正では、原材料としてポルトランドセメント、

少量混合成分および粉砕助剤が規定され、少量混合成分

を含めた高炉セメントの構成を明確にした上で、“製造

方法”の箇条が削除された。

旧規格において、高炉セメントは、原材料として規定

されたクリンカー、高炉スラグおよびセッコウで構成さ

れていたが、今回の改正では、高炉セメントの構成とし

て、ポルトランドセメントおよび高炉スラグの構成も追

加された（図-1参照）。これによって、ポルトランドセ

メントに少量混合成分が含まれる場合、高炉セメント中

Vol. 48, No. 2, 2010, 2
表-1 改正点の概要と対応規格

<table>
<thead>
<tr>
<th>項目</th>
<th>改正点の概要</th>
<th>改正内容の対応規格</th>
</tr>
</thead>
<tbody>
<tr>
<td>製造方法</td>
<td>「製造方法」の項が削除された。</td>
<td>JIS R 5210</td>
</tr>
<tr>
<td></td>
<td>少量混合成分や粉砕助剤を含むセメントの構成が明確化された。</td>
<td>JIS R 5211</td>
</tr>
<tr>
<td></td>
<td>混合セメントの構成が、（ポルトランドセメント＋混合材）と、（クリンカー＋セッコウ＋少量混合成分＋混合材）の2つとなった。</td>
<td>JIS R 5212</td>
</tr>
<tr>
<td></td>
<td>これまでの普通ポルトランドセメントのときに認められていた、少量混合成分（石灰石、高炉スラグ、フライアッシュ、シリカ質混合材）をセメントの質量に対して5%まで混合してもよいことが、早蒸ポルトランドセメントおよび超早蒸ポルトランドセメントにも適用された。</td>
<td>JIS R 5213</td>
</tr>
<tr>
<td></td>
<td>普通エコセメントに石灰石をセメントの質量に対して5%まで混合してもよいことになった。</td>
<td>JIS R 5214</td>
</tr>
<tr>
<td></td>
<td>低アルカリ形ポルトランドセメントの割合を廃止し、その内容は全体に規定された。</td>
<td></td>
</tr>
<tr>
<td>用途</td>
<td>普通エコセメントの用途として、「鉄筋コンクリートの内、高強度・高流動コンクリートを用いたものを除く」とあった注記が削除された。</td>
<td></td>
</tr>
<tr>
<td>品質</td>
<td>普通ポルトランドセメントの三酸化硫黄の規格値が「3.0%以下」から「3.5%以下」に改正された。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>フライアッシュセメント、早蒸ポルトランドセメント、超早蒸ポルトランドセメント、普通エコセメント、高炉セメント、シリカセメントA種およびフライアッシュセメントA種の強熱減量の規格値が「3.0%以下」から「5.0%以下」に改正された。</td>
<td></td>
</tr>
<tr>
<td>原材料</td>
<td>クリルカーの定義が、「けい素、アルミナ、酸、カルシウムのいずれかを含む原料を適当な割合で混ぜ、その一部を溶融するまで焼成して得られたもの」に変更された。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>高炉セメントの混合材ならびに少量混合成分として用いる高炉スラグとして、JIS A 6206に規定するコンクリート用高炉スラグ粉末粉も規定された。そして、塩基度の規定は1.4以上から1.60以上に改正された。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>フライアッシュセメントの混合材ならびに少量混合成分として用いるフライアッシュとして、JIS A 6208に規定するフライアッシュⅠ種もしくはフライアッシュⅡ種と種類が規定された。</td>
<td></td>
</tr>
<tr>
<td></td>
<td>少量混合成分として用いる石灰石の品質が、現行の「炭酸カルシウム含有率が95%以上」から「炭酸カルシウム含有率95%以上かつ酸性アルミナ含有率1.0%以下」に改正された。</td>
<td></td>
</tr>
<tr>
<td>試験方法</td>
<td>これまでの品質の表の注として示されていた試験項目ごとの試験方法を撤廃として示された。</td>
<td></td>
</tr>
<tr>
<td>塩化物イオン残存比の測定</td>
<td>エコセメントの塩化物イオン残存比の測定方法が新規に附属書として規定された。</td>
<td></td>
</tr>
<tr>
<td>報告</td>
<td>混合セメントの混合材の分量の範囲を試験成績表の備考に示すことが規定された。</td>
<td></td>
</tr>
<tr>
<td>標準試験</td>
<td>普通エコセメントの試験成績表の標準試験に「塩化物イオン残存比」の項目が設けられた。</td>
<td></td>
</tr>
<tr>
<td>附属書</td>
<td>技術的に重要な改正に関する新旧対照表が規定された。</td>
<td></td>
</tr>
</tbody>
</table>

図-1 高炉セメントの構成の概念図

注：1) JIS R 5210に規定する少量混合成分として高炉スラグを含む場合は、その量を高炉スラグ量に含める。
2) ここでいう少量混合成分には高炉スラグを含まない。
 また、その混合量はクリルカー、セッコウ、少量混合成分の合計に対し質量で5%以下。

The Outline of Revision of Japanese Industrial Standards Concerning the Quality of Cement
By M. Ichikawa, H. Omori and H. Anzai
Concrete Journal, Vol.48, No.2, pp.3–8, Feb. 2010

Synopsis This article introduces the contents of revision of five Japanese Industrial Standards (JIS) concerning the quality of cement. Those JIS were published on November 20, 2009.

Keywords : portland cement, portland blast-furnace slag cement, portland pozzolan cement, portland fly-ash cement, ecocement, Japanese Industrial Standards, quality
にも少量混合成分が含まれることになる。そのため、クリンカー、高炉スラグおよびせっこうからなる構成においても、少量混合成分が構成物の一つとして規定された。ただし、この場合の少量混合成分の混合量は、クリンカー、せっこうおよび少量混合成分の合計を、質量で5%以下でなければならない。

なお、JIS R 5211における少量混合成分には高炉スラグは含まれない。そのため、原材料として用いるボルトランドセメントに、JIS R 5210に規定する少量混合成分として高炉スラグが含まれる場合には、その量を高炉スラグの分量に含める必要がある。

（3） シリカセメント（JIS R 5212）およびフライアッシュセメント（JIS R 5213）

シリカセメントおよびフライアッシュセメントにおいても、高炉セメント同様に、①製造方法の条件が解消され、②原材料としてボルトランドセメント、少量混合成分および粉砕助剤が規定、③セメントの構成として（ボルトランドセメントおよび混合材）の構成の追加、各事項が改正された。

（4） エコセメント（JIS R 5214）

エコセメントは他の規格と同様に、セメントの構成が明確化され、製造方法の条件が解消された。その中で、普通エコセメントについても、セメントの質量が5%まで石灰石を混合できることが新たに規定された。これは、早強ボルトランドセメントおよび超早強ボルトランドセメントと同様に、一部の試料において注水後の早い時間にセメントベーストの軟度が低下する現象を改善する方法として、石灰石を混合することが有効であることから規定された。

表-2 法令、日本工業規格などで普通エコセメントの使用が制限されている例

<table>
<thead>
<tr>
<th>関連する法、規格、指針等</th>
<th>セメントに関する規定</th>
</tr>
</thead>
<tbody>
<tr>
<td>平成12年5月31日建設省告示第1448号（建築基準法の第37条に基づく告示）</td>
<td>建築物の基礎、主要構造部等に使用する建築材料並びにこれらの建築材料が適合すべき日本工業規格又は日本農林規格及び品質に関する技術的基準を定める件</td>
</tr>
<tr>
<td>JIS A 5308:2009（リディーミクストコンクリート）</td>
<td>本体7.1において次のように規定されている。</td>
</tr>
<tr>
<td>JIS A 5364:2004（プレキャストコンクリート製品一材料及び製造方法の通則）</td>
<td>本体4.1,1セメントにおいて、"セメントはJIS R 5310, JIS R 5311, JIS R 5312, JIS R 5313及びJIS R 5314のうち普通セメント、ただし高強度コンクリートは除く。"</td>
</tr>
<tr>
<td>エコセメントを使用するコンクリートの調合設計・施工指針（案）・同解説（2007年）, 日本建築学会</td>
<td>単4.1.1（特殊コンクリート用のための試験結果）において、下記のコンクリートは「普通エコセメント、特段エコセメント、強度エコセメント、高強度コンクリート、混強度コンクリート、可換コンクリート」のうち普通エコセメントに該当することを評価されている。</td>
</tr>
</tbody>
</table>

3.2 用途一普通エコセメントの用途制限の規定の削除（JIS R 5214）

旧規格では、普通エコセメントの用途について、鉄筋コンクリートでは高強度コンクリートと高流動コンクリートについては使用できないと規定されていた。しかし、この規格で用途制限を定めていると、新たな技術が確立しても当該用途には規格体系上使用することができない。こうした状況を踏まえ、今回の改正では、この制限事項が廃止された。

その一方で、エコセメントには一部のコンクリートについて法令、日本工業規格、土木学会のコンクリート標準示方書、日本建築学会の調合設計・施工指針（案）などで使用の制限が定められている。それらの一例を表-2に示す。

今回の改正による普通エコセメントの用途制限に関する規定の削除は全てのコンクリートに使用できることを意味するものではなく、普通エコセメントの使用にあたっては、その適用について法令、日本工業規格、土木学会のコンクリート標準示方書、日本建築学会の調合設計・施工指針（案）・同解説などを参考に検討する必要がある。

なお、早強セメントについては塩化物イオン量が0.5%以上、1.5%以下と規定されており、鉄筋コンクリートへの使用は鉄筋の鉄酸化の観点から困難であると判断し、引き続き、用途が制限されている。

3.3 品 質

（1） ボルトランドセメント（JIS R 5210）

普通ボルトランドセメントの微粉粒度の規格値の変更

近年のクリンカー製造時における代替原料としての廃棄物、副産物の使用量が増えており、それに伴い、クリンカー中のアルミナカルシウム（C.A）量が増える傾
表-3 強熱減量の主な要因

<table>
<thead>
<tr>
<th>番号</th>
<th>強熱減量の主な要因</th>
<th>想定される最大値</th>
</tr>
</thead>
</table>
| 1 | ①セメントの乾燥によるもの
②セメントに含まれるクランカー粒がややかずを含む存在する浮遊石が空気中での飛散に伴って生成した水和物からの吸水
③セメントが吸収した亜硫酸素（水和物の炭酸化等）の脱炭酸 | 試料により差異があるものの1.0％前後と想定される |
| 2 | 少量混合成分として混合した石灰石の脱炭酸 | 少量混合成分として5％の石灰石が混合されているとすると2.2％になる |
| 3 | せっこうの結晶水の脱水 | 三酸化硫黄の規格値が3.5％に、それに水素が始発するものと仮定すると1.58％になる |
| 合量 | | 4.78％ |

図-2 製造時および工場出荷時におけるセメントの強熱減量の変化の一例（セメントの種類：普通ポルトランドセメント）

向ある。セメントの水和反応を考慮した場合、一般にアルミ酸カルシウム（C.A）の増加に対して適度に三酸化硫黄を増やした方がよいといわれている。そのため、今回の考えでは、普通ポルトランドセメントの場合アルミ酸の規格値が、水中膨張が問題となる例として、3.0％以下から3.5％以下に変更された。

2）普通、早強および超早強ポルトランドセメントの

強熱減量の規格値の変更

今回の改正で、早強および超早強ポルトランドセメントへの少量混合成分の混合が認められ、1979年の改正で認められた普通ポルトランドセメントを含めて、3種類のポルトランドセメントに少量混合成分の混合が認められたこととなった。

少量混合成分としては、石灰石、高炉スラグ、フライアッシュおよびシリカ質混合材の4種類の物質が規定されている。このうち、石灰石が少量混合成分として混合された場合には、強熱減量（975±25℃）に石灰石の脱炭酸による減量も含まれる。表-3に強熱減量の主要要因を示す。石灰石の脱炭酸とせっこうの結晶水の脱水による強熱減量の合計の最大値は3.78％と、改正前の規格値の3.0％を超える。一方、図-2に示すとおり、セメント製造時の強熱減量と工場出荷時の強熱減量にはほとんど差が認められず、セメントの製造から出荷の段階においてセメントの風化はほとんど起こしていないといえる。そのため、今回の改正では普通、早強および超早強の各ポルトランドセメントの強熱減量の規格値が3.0％以下から5.0％以下に変更された。

なお、1979年の改正で、普通ポルトランドセメントに少量混合成分の混合が認められた際には、それに伴う強熱減量の規格値の見直しが行われていなかった。

（2）高炉セメント（JIS R 5211）

今回の改正で高炉セメントにも少量混合成分の混合が認められ、その一つである石灰石を用いた場合、（1）の2）に示したように、強熱減量に脱炭酸成分が含まれることから、高炉セメントの強熱減量の規格値が3.0％以下から5.0％以下に変更された。

（3）シリカセメント（JIS R 5212）およびフライアッシュセメント（JIS R 5213）

高炉セメントと同様に、シリカセメントA種およびフライアッシュセメントA種の強熱減量の規格値が3.0％以下から5.0％以下に変更された。

3.4 原 材 料

（1）ポルトランドセメント（JIS R 5210）

1）クリンカー

クリンカーの定義は、「けい素、アルミウム、鉄、カルシウムのいずれかを含む原料を適切な割合で混ぜ、その一部が溶融するまで焼成して得られたもの」とした。一般的な表現に改められた。

2）少量混合成分

①石灰石の純度

これまで少量混合成分に用いる石灰石は「炭酸カルシウム95％以上を含むセメント製造用石灰石」と規定されていたが、今回の改正で、「炭酸カルシウムの含有率が90％以上、かつ、酸化アルミウムの含有率が1.0％以下の品質を有する石灰石」と改められた。酸化アルミウムの含有率の規定は、表土（粘土）の混入を制限するために追加されたものである。

なお、石灰石中の炭酸カルシウムの含有率および酸化アルミウムの含有率の求め方も規定された。

2）フライアッシュの品種

少量混合成分に用いるフライアッシュはこれまで”JIS A 6201に規定するもの”と規定されていたが、これは現在のフライアッシュI種の品質が規定されていたJIS A 6201:1996に対応するものであった。今回の改正
正では、1999年に改正された現行のJIS A 6201:1999の内容に合わせ、“JIS A 6201に規定するフライアッシュⅠ種又はフライアッシュⅡ種”に限定された。

３）粉砕助剤
これまで、製造方法の箇条に記述されていたが、製造方法の削除に伴い、原材料として規定された。
（2）高炉セメント（JIS R 5211）
１）ポルトランドセメントおよび粉砕助剤
高炉セメントの構成の明確化により、新たに原材料として規定された。
２）高炉スラグ
今回の改正では、JIS A 6206 "コンクリート用高炉スラグ微粉末”に規定される高炉スラグも適用できるようになった。これに合わせ、これまでの高炉水砕スラグの塩基度の規定も“1.4以上”からJIS A 6206に規定される“1.60以上”に改正された。

３）少量混合成分
１）のポルトランドセメントと同様に、高炉セメントの構成の明確化により、新たに原材料として規定された。
品質はJIS R 5210のと同様であるが、混合セメントの各規格で主混合材（各混合セメントの混合材、高炉セメントでは高炉スラグのこと）と同じ材料を少量混合成分には含めない。
（３）シリカセメント（JIS R 5212）
高炉セメントと同様に、新たにポルトランドセメント、少量混合成分および粉砕助剤が原材料として規定された。
（４）フライアッシュセメント（JIS R 5213）
１）フライアッシュ
JIS R 5210における少量混合成分のフライアッシュと同様に、フライアッシュセメントのフライアッシュの品質についても、JIS A 6201に規定するフライアッシュⅠ種またはフライアッシュⅡ種に限定された。
２）ポルトランドセメント、少量混合成分および粉砕助剤
高炉セメントと同様に、新たにポルトランドセメント、少量混合成分および粉砕助剤が原材料として規定された。
（５）エコセメント（JIS R 5214）
セメントの構成の明確化により、新たに石灰石および粉砕助剤が原材料として規定された。

３・５塩化物イオン量の残留比の測定方法（JIS R 5214）
今回の改正で、塩化物イオン残留比の測定方法が附属書Aとして規定された。また、普通エコセメントの試験成績書の標準様式に塩化物イオン残留比の項目が加えられ、使用者は試験成績書によって塩化物イオン残留比（フレッシュコンクリート中の水に溶出しない普通エコセメント中の塩化物イオン量の比率）を確認できるようになり、普通エコセメントを用いたコンクリートの塩化物イオン量の品質管理および検査は式（1）により行うことができるようになった。

\[A = B + \alpha \times C \times D / 100 \] 　…………式（1）

A：普通エコセメントを用いたコンクリートの塩化物イオン量の品質管理値（kg/m³）
B：フレッシュコンクリート中の塩化物イオン量の測定値（kg/m³）
C：普通エコセメントの塩化物イオン量（％）
D：単位セメント量（kg/m³）
\(\alpha \)：塩化物イオン残留比

これまで、普通エコセメントを用いたフレッシュコンクリートの塩化物イオン量の品質管理および検査では、塩化物イオン残留比（\(\alpha \)）は固定値の0.7を用いることが旧規格の解釈で認められておりました。
しかし、塩化物イオン残留比について、その後数多くのデータが蓄積され、実証の塩化物イオン残留比は0.7より小さくなっていることが判明している。
図-3に普通エコセメントの塩化物イオン残留比の経時変化を示す。
この図から、塩化物イオン残留比を固定値の0.7とする普通エコセメントを用いたコンクリートの塩化物イオン量の品質管理および検査を実施した場合には、普通エコセメントを用いたコンクリートの塩化物イオン量の品質管理値と実際のコンクリート中の塩化物イオン量は乖離してしまいます。
また、参考文献の3)、4)およびJIS A 5364:2004（プレキャストコンクリート製品ー材料及び製造方法の通則）では、塩化物イオン残留比を、固定値としてではなく、変数（\(\alpha \)）として扱って適用することにしている。

３・６報 告
（1）高炉セメント（JIS R 5211）、シリカセメント（JIS R 5212）およびフライアッシュセメント（JIS R 5213）
高炉セメント、シリカセメントおよびフライアッシュセメントにおいて、混合材の分量の範囲を試験成績書の備考に示すことが規定された。
（2）エコセメント（JIS R 5214）
普通エコセメントの試験成績書の標準様式に塩化物イオン残留比の項目が加えられた。
表-4 今回の改正で新たに規定された附属書

技術上重要な改正に関する	JIS R 5210	JIS R 5211	JIS R 5212	JIS R 5213	JIS R 5214
新旧対照表					
塩化物イオン残存比の測定方法					
特許権等に関する情報					

3.7 附属書
今回の改正で次の附属書が規定された（表-4）。「技術上重要な改正に関する新旧対照表」は、規格の改正前後の比較をしたもので、使用者に改正点が分かりやすくなっている。

4．審議中特に問題となった事項
次の点がJIS原案作成委員会および土木技術専門委員会の審議中に、問題となった事項である。

4.1 JIS原案作成委員会で問題となった事項

（1） 少量混合成分として用いる石灰石の純度について
少量混合成分に用いる石灰石の品質として、炭酸カルシウムの含有率を95%以上から90%以上に引き下げるなど、引き下げに問題はないが、それに関連して、表土（粘土砂）の混入が懸念された。その理由として、コンクリートの製造において使用される化学処理剤の添加量に影響を及ぼすと考えられるためである。そのため、炭酸カルシウムの含有率の規定と、土の混入の指標となる成分の限定を盛り込む必要があるとの指摘があり、酸化アルミニウムの含有率の最大値が規定された。

（2） 強熱減量の規格値の変更について
普通ポルトランドセメント、早強ポルトランドセメントおよび超早強ポルトランドセメントの強熱減量の規格値の変更については、中立者および使用者の委員から、強熱減量がセメントの風化の指標として用いられていており、強熱減量の規格値を引き下げるということは、セメントの風化をさらに抑制することになる可能性があるとの指摘および、試験成績表に少量混合成分の種類を明記すれば、強熱減量の値について理解が得やすいのではないかとの指摘もあり、図-2に示されている結果を踏まえて、最終的には規格値が変更された。

（3） セメント中の微量成分について
セメントには原料、燃料などに起因する微量成分が含まれていることが知られている。そのため、環境保全の立場からモルタルやコンクリートから微量成分の溶出量の程度によっては、セメント中の微量成分含有量の最大値を品質規格で規定すべきであるとの意見が出された。しかし、土木学会から2003年に出された報告書においては、モルタルおよびコンクリートからの微量成分の溶出量は問題ないとされている。そのため、現在時点ではセメント中の微量成分含有量を品質規格で規定するには至らなかった。

4.2 土木技術専門委員会で問題となった事項

（1） 混合セメントの混合材の分量
JIS R 5211（高炉セメント）、JIS R 5212（シリカセメント）およびJIS R 5213（フライアッシュセメント）に共通して、種類の区分の基準とする分量（質量％）（例えば、高炉セメントであれば、高炉スラグ量、ユーザに分けるように製造時の混合量の範囲を各JISに規定している試験成績書の備考に記載すべきであるとの議論があった。これに対し、JIS原案作成委員会において、再検討の結果、「本体の変更10（報告）において、高炉セメントの高炉スラグの分量の範囲を試験成績書の備考に示す」ことを規定した修正案が提出され、土木技術専門委員会で書面審議の結果、承認された。

（2） JIS R 5214の附属書Bにおける普通エコセメントの用途制限を解除する改正理由
附属書B（参考）「技術上重要な改正に関する新旧対照表」における普通エコセメントの用途制限を削除する改正理由に関し、用途制限が導入されるとしても何でも得られるかのような誤解を生じる恐れがあり、用途制限解経験を全てのコンクリートに使用できることを意味することではない旨、用途制限の考え方や理由を整理した修正案を検討すべきであるとの議論があった。これに対し、JIS原案作成委員会において、修正案を再検討した結果が提出され、土木技術専門委員会で書面審議の結果、承認が得られた。

5．終わりに
昨年11月に改正公表されたセメントの品質規格の改正内容について、概要を示すとともに、具体的な改正内容をそれぞれの規格に対して解説した。

今回の改正では、昨年の改正への要望として、「技術的に重要な改正に関する新旧対照表」を附属書として規格本体に盛り込むことが必要であった。この改正にも盛り込まれているので、本稿とともに改正内容について参考にされるとよい。

最後に、これらの改正案を審議に際した「JIS原案作成委員会ならびに「日本工業標準調査会標準部会土木技術専門委員会」（委員長：長瀬義重（愛知工業大学特任教授））の関係者に対し厚く御礼を申し上げる次第である。

参考文献
1) 山下弘樹・山田一夫・筆尾・星野清一：ALO量が異なるポルトランドセメントの最適なセメント量に及ぼす石灰石添加の影響、コンクリート工学論文集、Vol.18、No.2、pp.103～112、2007年5月
2) 太平洋セメント株式会社内資料
3) 日本建築学会：エコセメントを使用するコンクリートの調合設計・施工指針（案）案内解説、2007年10月
4) 旭化成研究所：エコセメント利用技術マニュアル、2003年3月
5) 土木学会：コンクリートからの微量成分溶出に関する現状と課題、2003年3月