ペンタマラン型高速 RoRo バージ船の実験的研究

学生員 中林 恵美子
学生員 長野 真二郎
正員 池田 良徳

Experimental studies on performances of a pentamaran type fast RORO barge

by Emiko Nakabayashi, Student Member Shinjiro Nagano, Student Member Yoshiho Ikeda, Member

Key Words: Ship, Pentamaran, Multi-hull, Resistance, Seakeeping, MSI

1. 緒 言
自動車や航空機などの交通機関にシェアを取られ年々減少する日本の内航海運の再生を図るためには、高速でかつ省エネ型で、経済性にも優れた画期的内航船舶の出現が求められている。これため、国はポッド推進器を採用したスーパーコンピュータの開発に取り組み、著と成果を挙げつつある。

筆者らは、同様の目的のもと、5つの船を有するペンタマラン型高速 RORO バージ船の開発に取り組み、先にそのコンセプト設計と簡単な性能調査、さらに経済性評価を発表した。その結果では、提案されたペンタマラン船型には実現可能性のあるものの、抵抗性能および耐航性能等にまだ問題があることが明らかになった。

本研究では、この前報に引き続き、ペンタマラン型高速 RORO 船のコンセプト設計の代替案についての検討を実施することとし、主に実験によってその性能調査を行った。

2. ペンタマランの船型

2.1 デミハル船型
前報で採用したデミハル船型は単純船型であったが、抵抗および耐航性能に問題があることが判明したため、本研究では、実在の多船型のデミハル船型とはほぼ同じ、Fig.1に示す船型を採用することとした。また、建造上の簡便さを考えて、5つのデミハルを相似とした点も前報とは違っている。

2.2 タイプシップおよびデミハルの配置
タイプシップとしては60m単船型小型カーフェリー（航海速度15ノット、以下モデル船と呼ぶ）とし、その排水量は1,300トンである。ペンタマラン船型では、この排水量を保持したまま、航海力25ノットに増加し、デッキ面積を大幅に増加することを基本コンセプトとしている。今回のペンタマランのデミハルおよび全体の主目的をTable1に示す。

また、Fig.2およびFig.3に示すようにデミハルの幅方向の配置を若干変化させた2船型について検討を行うこととし、それぞれShip AおよびShip Bと呼ぶこととする。

Fig.1 Body plan of a demi-hull of the pentamaran.

Table 1 Principal particulars of the pentamaran in full scale.

<table>
<thead>
<tr>
<th></th>
<th>Full scale</th>
<th>Demihull</th>
<th>Pentamaran</th>
</tr>
</thead>
<tbody>
<tr>
<td>L (m)</td>
<td>70.45</td>
<td>105.84</td>
<td></td>
</tr>
<tr>
<td>B (m)</td>
<td>4.4</td>
<td>58.08</td>
<td></td>
</tr>
<tr>
<td>D (m)</td>
<td>4.081</td>
<td>4.081</td>
<td></td>
</tr>
<tr>
<td>d (m)</td>
<td>1.83</td>
<td>1.83</td>
<td></td>
</tr>
<tr>
<td>W (t)</td>
<td>258,329</td>
<td>1291.6</td>
<td></td>
</tr>
<tr>
<td>S (m²)</td>
<td>329,622</td>
<td>1648.11</td>
<td></td>
</tr>
</tbody>
</table>

Fig.2 Arrangement of five demi-hulls of Ship A.

Fig.3 Arrangement of five demi-hulls of Ship B.
3. 模型実験による性能分析

3.1 模型船
本学曳航水槽においてペンタマランの48分の1縮尺の模型船を用いて実験を行った。なお、Ship Aに比べて、Ship Bは、4つのサイドハルが100mmずつ内側に配置されている。なお、各デミールには、スタッド等の乱流促進は行っていない。

\[C_n = \frac{0.074}{Rn} - \frac{1700}{Rn} \] (1)

Fig. 4に示す模型船の抵抗係数は、Fnの小さい領域において、Plandtleの式による摩擦抵抗係数の値に漸近しており、今回実験用に用いた模型船の形状影響係数がほとんどできることを示す。抵抗係数はFn=0.3において高いピークをもち、モノハル船ではFn=0.5付近に位置するラストハルがFn=0.6付近に移動しているように見える。

3.2 抵抗試験による抵抗性能評価
本学曳航水槽にて、Ship AおよびShip Bの抵抗試験を行った。計測した抵抗係数を求めるための模型船と実船の抵抗係数をそれぞれFig. 4、Fig. 5に示す。実船の抵抗推定には2次元外挿法を用い、模型船のRn数が4.5×10^3～2.7×10^4の範囲で、乱流抵抗を行わなかったため、摩擦抵抗係数は式(1)に示すPlandtleの選移域における式を、実船の摩擦抵抗係数にはShoenherrの式を用いた。

\[Y' = F \left(\frac{1}{2} \rho L_d dU^2 \right) \] (2)

\[N' = M \left(\frac{1}{2} \rho L_d dU^2 \right) \] (3)

Fig. 4 Total resistance coefficient \(C_r \) of the model ships. [\(F_n = \sqrt{U} (gL_d) \), \(L_d \) : length of all over of demi-hull]

Fig. 5 Total resistance coefficient \(C_r \) for the full scale pentamars, Ship A and Ship B.

次に、同程度の排水量を持つ2隻の単胴船の有効馬力との比較を行った結果をFig. 6に示す。なお、単胴船はL/B=6.25の高速コンテナ船型と、モデル船であるL/B=3.98のカーフェリー船型である。航海速度が18ノット程度までの模型船やコンテナ船型のほうがEHPの値は小さくなっているが、高速域になると、ペンタマランの方がEHPの値が小さくなっていることがわかる。その値は、航海速度25ノットにおいて、コンテナ船型が10,000馬力程度であるのに対し、ペンタマランは7,000馬力程度となっており、ペンタマランの輸送効率が良いことがわかる。また、幅広船型のモデル船については更に大きな馬力が必要なことが予想される。

3.3 操縦性能評価
続いて操縦性能の簡単な評価を行うために、Ship Aを用いて斜航試験を行った。曳航速度はFn=0.15、2.0の2通りで行い、斜航角を変化させて実験を行った。計測された横力係數、回頭モーメントを(2)、(3)式により無次元化し、各デミールの流体力を井上の推定式(2)を用いて求めて足を合わせた値。およびモデル船について井上の推定式(2)で求めた値との比較を行った。結果をFig. 7、Fig. 8に示す。

Fig. 6 Comparison of estimated EHP among two types of pentamars, monohull car ferry and container ship.
Fig. 7 Coefficient of side force acting on the pentamaran model in obliquely towing tests.

Fig. 8 Coefficient of yaw moment acting on the pentamaran model in obliquely towing tests.

次に、これらの計測値に基づいて、ベンタマランの直進性について検討を行うこととする。まず、斜航状態から舵による操舵によって直進に戻れるかの可否を検討するために、必要な舵面積を求め、それをモデル船の舵面積との比較を行うことで、その妥当性を検討した。舵に働く直圧力の算出には(4),(5)式を用い、舵アスペクト比\(\lambda_k \)は1.8とし、ベンタマランの船尾に舵を2つ取り付けとした。本ベンタマランが、何らかの外力によって、船体が\(\beta = 5^\circ \)斜航した時に、船体に働く回頭モーメントを相殺するために必要な舵面積を求めた。

\[
\begin{align*}
 F_{x_0} &= \frac{1}{2} \rho A_s U_k^2 \sin \alpha_k \cdot f_s(A_s) \\
 f_s(A_s) &= 6.13 A_s \\
 &\quad + A_s + 2.25
\end{align*}
\]

結果をTable 2に示す。この表から、舵角が15度の時、ベンタマランではモデル船の舵面積とほぼ等しい3.38m\(^2\)の舵2枚が必要となる。モデル船の舵面積に比べると3倍の舵面積となるものの、2枚舵にすれば舵角5°から直進に戻すための舵角は15°で十分ということとなる。今後、旋回性能等の操縦性能についての検討が必要である。

Table 2 Required rudder area to cancel yaw moment acting on hulls in 10° of yaw angle when the pentamaran runs at 25 knots.

<table>
<thead>
<tr>
<th>Rudder angle</th>
<th>Rudder area ((A_{sk}))</th>
</tr>
</thead>
<tbody>
<tr>
<td>0°</td>
<td>3.96m(^2)</td>
</tr>
<tr>
<td>15°</td>
<td>3.38m(^2)</td>
</tr>
<tr>
<td>25°</td>
<td>1.3m(^2)</td>
</tr>
<tr>
<td>35°</td>
<td>0.74m(^2)</td>
</tr>
</tbody>
</table>

3.4 向波中運動計測による耐航性能評価

続いて、Ship Aの向波中運動計測した。ベンタマランの\(F_n = 0.49\)（航速25ノット）、モデル船の\(F_n = 0.32\)（航速15ノット）とし、波高1mを0.82mとした。結果をFig. 10, Fig. 11に示す。両船で船長が異なるため、横軸は有次の波長としている。

Fig.10に示す縦揺れの結果から、波長が100m以下の短波長域ではベンタマランの方がかなり小さいが、波長が100m以上では両者の縦揺れ振幅はよく一致していることがわかる。またFig.11に示す上下揺れの結果は、両者の運動振幅は全波長域でよく一致している。これらの結果から、本ベンタマランは単胴モデル船の約2倍の航速力において、縦揺れにおいてはモデル船と同じ短波長域ではより優れた運動性能を有していることがわかる。

Fig. 10 Comparison of pitch amplitude between the pentamaran and the monohull car ferry in head regular waves.
Fig. 11 Comparison of heave amplitude between the pentaraman and the monohull car ferry in head regular waves.

Fig. 12 Comparison of vertical acceleration of the monohull ferry and the pentaraman in head regular waves. [Wave height : 1m, Wave period : 7.4sec, Pentaraman : 25knot, Monohull ship : 15knot]

Fig. 13 Estimated MSI of the monohull ferry at 15 knot in head regular waves.

結言
1) 本ペンタマランは、25ノットの航海速度において、今回比較対象とした高速コンテナ型船に比べて、抵抗が約30%低く、モデルとした単体型カーフェリー船型に比べても、大幅に抵抗を小さくすることが確認された。
2) 斜航時に働く揺れおよび傾斜モーメントは、小斜転角では従来船型用の推定法で推定可能であるが、斜航角が増加すると非線形性が顕著となり、線形推定値に比べると大きくなくなる。
3) 本ペンタマランでは、直進性を確保するためには、単体フェリーの2倍の軸面積が必要となる。
4) 本ペンタマランは25ノットの高速で向波中を航行した場合でも、15ノットで航行する単体フェリー船型とほぼ同等もしくは若干優秀な運動性能を有している。
5) 25ノットの本ペンタマランの船体(heitsi)は、15ノットの単体フェリー船型よりも乗り心地の点で若干劣るが、それは高速化したことによる出会い周波数の増加によるものである。

参考文献
(1) 池田良雄,伊藤善,中林恵美子：ペンタマラン型高速ROROバージ船のコンセプトデザイン,日本船舶海洋工学会論文集,第1号,2005,pp.35−42。
(2) 関西造船協会: 造船設計便覧(第4版), 海文堂, 1983。
(3) 辻本勝, 池田良雄: 船の環境としての波 - 実海域性能, シーマージョン, 乗り心地, -, 成臨(日本船舶海洋工学会誌)第5号, 2006.3。