外洋上プラットフォームの余寿命便益に基づく保守管理手法の検討

A Study on the Method for Maintenance of Ocean Platform Considering Remaining Life Benefit

by Ryouji Iwata, Student Member
Yasumi Kawamura, Member
Tomonori Asa, Student Member

Key Words: Remaining Life Benefit(RLB), Structural Reliability, Maintenance of Ship Structures, Life Cycle Cost, Platform

1. 背 景

近年深刻化が著しいエネルギー資源問題の解決策として広大な海洋空間の効率的な利用が期待されている。海洋空間の利用方法としては海底に存在する資源やエネルギー資源の利用を目的とした海底資源開発地域、洋上の大規模な養殖を目的とした海洋農場基地の開発、洋上の風力を利用した洋上風力発電プラントなどが挙げられる。しかし、以上のような海洋空間の利用施設はこれまでに建設された例がないため、構造物の保守管理手法が確立されていない。本研究の目的はそのような構造物の保守管理プラランの比較検討を行い、最適な保守管理プランを提案することにある。その際、単に経済性を考えるだけでなく、事故によって発生しうるコストなどのライフサイクル全体におけるコストおよび収入、すなわち便益を考慮する必要がある。事故リスクを減らしつつ便益を最大化するような保守管理プランを考えることで真に低コストなライフサイクル形態を考えることができる。本研究では比較検討を行う対象となる海洋空間の利用施設として文献1]を参考に、Fig.1のような供給期間100年の外洋上プラットフォーム式風力発電施設を採用した。

2. 余寿命便益評価の概念

本研究では、以下のように、供給期間内に得られる余寿命収入(RLB)と余寿命コスト(CRL)の差を余寿命便益(RLB = Remaining Life Benefit)として定式化し、その評価に基づく保守管理方法を提案した。

\[RLB = R_{sl} - C_{rl} \] (1)

まず、余寿命収入(Rsl)は年間あたりの収入Ropesを用いて

\[R_{sl}(P_L) = \sum_{i=1}^{n} \left(\bar{p} \cdot C_{CFL}(P_L) \right) \] (2)

と表される。ここでは、t_s,mは構造物の寿命（機能停止する年齢）をまた、t_mは余寿命便益を評価する時点での構造物の年齢を表し、余寿命収入Rslは1年目における収入Ropes総和したものとなる。P_Lは年間における有効断面積を表し、t_s,mは1年年までの表面積を表し、t_mは1年年までの表面積を表す。本研究では風荷による風力発電を考えており、文献[1]を参考に、年間の発電量を3504万[kWh]とし、電力単価については20円/kWhと設計した。つまり年間あたりの収入は7080万円となっている。

次に、余寿命コストCrlは以下のように定式化を行った。

\[C_{rl}(P_L) = C_s + \sum_{i=1}^{n} \left(\bar{p} \cdot C_{e_i}(P_i) + C_{cont}(P_i) + C_{risk}(P_i) \right) \] (3)

余寿命コストの内訳としてはイニシャルコスト(C_s)、メンテナンスコスト(C_m)、その他のコスト(Cother)、事故リスク(Crisk)、撤去費用(C_s)である。事故リスクは構造劣化に伴い年々変化する値であり、ある年齢iにおけるリスクは、年間破壊確率P_bと被害期待値C_rによって以下のように表されることになる。

\[C_{risk} = C_r \times P_b \] (4)

本研究では、防食方法や修理計画等の保守管理プランの違いによるイニシャルコスト及び破壊確率の違いが余寿命便益にどう影響を及ぼすかを比較検討していく。

3. 保守管理プランの設定

本研究では保守管理プランの比較として、防食方法の違いが余寿命便益に及ぼす影響に着目している。一般に、浮体構造の防食方法は部位によってそれぞれ適切なものを選ぶべきであると考えられる。事の整理においてはFig.2のような防食部位を水中部、飛沫干渉部、海上大気部の3つの部位に分ける。そしてそれぞれの部位に適切な防食方法及び保守管理プランを用いる年数に

Fig.1 Principal dimensions of the structure[1]

* 横浜国立大学大学院工学府
**横浜国立大学大学院工学研究科
***横浜国立大学大学院環境情報研究科
原稿受付 平成20年4月18日
春の講演会において講演 平成20年5月29,30日
©日本船舶海洋工学会

—71—
4. 破壊確率の算定

本研究では、破壊のシナリオとして、腐食による構造劣化と波浪荷重による構造の破壊を考えた。よって破壊確率の算定には、以下のフローチャートに示すように、限界状態関数を定式化し構造信頼性解析を行った。

![Flowchart](image)

Fig.3 Flowchart for calculating the Probability of failure

4.1 荷重 S の算定

荷重を算定するためには、対象構造の形式および設置海域といった各条件の設定を行う必要がある。対象構造についてFig.1に示した通りであるが、設置海域については文献[5]を参考に、発電コストが低い伊豆冲と設定した。次にFig.4のように対象となる浮体構造を四角形パネルによって再現し、次元境界要素法[6]を用いて各パネルにかかる波浪荷重の算定を行った。

![Panel division of the structure](image)

Fig.4 Panel division of the structure

波浪荷重の内訳としては、波浪強制力、慣性力、造波減衰力、復元力である。これらの荷重を足し合わせたものを各パネルの各方向について算出し、この波浪荷重を1D要素モデルによって再現された浮体構造に対して、FEM解析を行うことで、波浪荷重によって生じる構造の波浪曲げモーメント Mw を算出した。このとき、曲げモーメントが最も大きかった浮体中央部（Fig.4参照）を強度評価箇所とした。このFEM解析を波波周波数 ω が 0 〜6[1/s]の範囲で、波入射角 θ が 0°, 30°, 60°, 90° の 4 方向について実施し、強度評価箇所における Mw の周波数応答関数 H(ω, θ) を作成した（Fig.5）。

![Frequency response function](image)

Fig.5 Frequency response function(θ=0°)

次にこの周波数応答関数をもとに短期予測を行う、ある短期海象（有義波高 : H, 有義波周期 : T）における波浪曲げモーメント Mw 最大値分布 F0(Mw) を設定した 4 方向の波入射角 θ について算定した。短期海象における最大値分布は Rayleigh 分布によって推定できるので、以下のよう近似する。

\[F_0(P) = 1 - \exp(-\frac{P^2}{2\sigma^2}) \] 　　(5)

ここで、分散 \(\sigma_r^2 \) については、作成した周波数応答関数 H(ω, θ) および、JONSWAP 型スペクトル S(ω) を用いて、次式によって算定を行っている。
次に長期予測を行うために、まずは設置海域の海象データ[7]を準備した。データをもとに、ある期間海象が発現する確率 \(f_s(H_s,T_s) \) を計算した。これより、荷重 \(M_w \) の長期予測、つまり設置海域における最大値分布は以下のように表される。

\[
F(M_w) = \frac{1}{\hat{S}} \int_0^\infty \left[H - \hat{S}(M_w) \right] dH
\]

さらに、構造物が年間に1回の波に出会う場合は、年間の最大値の確率分布と確率密度分布は以下のようにになる。

\[
F_{max}(M_w) = \{F(M_w)\}^n
\]

\[
f_{max}(P) = n[F(P)]^{n-1} \frac{dF}{dP}
\]

以上のような手順によって計算した確率密度分布をFig.6に示しておく。この分布の平均値は7.90×10^7[N·m]で、変動係数は0.08514である。

![Fig.6 Annual probability density distribution of extreme value](image)

4.3 構造信頼性解析

本研究では、このように定式化された限界状態関数 \(g(t) \) をもとに Rackwitz-Fiessler の方法を用いた一様構造信頼性解析により浮体構造の波浪応力モーメントによる年間の破壊確率の算定を行った。Table 2 にこの限界状態関数 \(g(t) \) に含まれる 5 つの確率変数 \(\sigma_y, C, t_c, M_w \) の分布を示す。（ただし \(C \) は部位によって \(t_c \) は防食方法によって異なる）

<table>
<thead>
<tr>
<th>Table 2 Probability variable</th>
</tr>
</thead>
<tbody>
<tr>
<td>プランA</td>
</tr>
<tr>
<td>平均</td>
</tr>
<tr>
<td>(\sigma_y)</td>
</tr>
<tr>
<td>(C) (海上大気)</td>
</tr>
<tr>
<td>(C) (水深干渉)</td>
</tr>
<tr>
<td>(C) (水深干渉)</td>
</tr>
<tr>
<td>(t_c) (海上大気)</td>
</tr>
<tr>
<td>(t_c) (水深干渉)</td>
</tr>
<tr>
<td>(M_w)</td>
</tr>
</tbody>
</table>

次に、限界状態関数を標準正規化することにより、標準正規化された空間の原点と限界状態となる曲面の最短距離が信頼性指標 \(\beta \) として定義することができるようになる。具体的には文献[9]に示すように計算法により \(\beta \) を求めた。このように算定された信頼性指標 \(\beta \) を標準正規分布 \(\Phi \) に代入することにより年間破壊確率 \(P_\beta \) を求めることができる。

\[
P_\beta = \Phi(\beta)
\]

5. 破壊確率の比較

信頼性解析によって算定した破壊確率の経年変化を、プラン A, B, C のそれぞれについて比較したものをFig.7に示す。プランAを見てわかるように、プランBでは塩害寿命が尽きた後も補修を行わないため、破壊確率が他の2つを比べて70年で最大れあたりから急激に上昇していることがわかる。100年目の年間破壊確率は、プランAは4.817×10^8、プランBは1.261×10^9、プランCは4.116×10^4であった。
6. 余命便益の比較

算定した破壊確率をもとに事故リスクをはじめ、その他のイニシャルコストやメンテナンスコストから余寿命コストを算定する。そして風力発電による余寿命収入を算出して、便益の合計の経年変化と100年目の余寿命便益の合計をプランごとに比較する。Fig.8 に、各プランにおける合計余寿命便益の経年変化を示す。

図のように、破壊確率が上がった後に便益に大きな差が生じていることから、破壊確率が余寿命便益に影響を与えていることが分かる。次に、式(1)で計算され各年の便益の総額である余寿命便益を比較したものを Fig.9 に示す。図のように、プラン A が最も余寿命便益が高くなっていた。すなわち、今回の計算では、イニシャルコストが高くとも再塗装の必要性が低いプラン A が最も優れていると評価された。

6. 結言

本研究では、余寿命便益を用いた外洋上プラットフォームの保守管理法の評価・決定手法の検討を行った。本手法では、各種確率変数やコストの設定及び破壊シナリオ・破壊確率の評価方法に様々な仮定が用いられている。よって、便益値自体は正確な値であるとは言えず、今後その精度を検討する余地がある。しかしながら、このような考え方を用いることにより、様々な保守管理プランの合理的な比較が可能となり、適切な保守管理方法の決定が行えるのではないかと考えられる。そして外洋上プラットフォームの防食に関する保守管理については、イニシャルコストが高くとも再塗装の必要性が低いプラン A が最も優れているという結果が得られた。

参考文献
1) 矢後清和, 大川豊, 宮島哲吾, 中條俊樹, 石井健一, 高野幸, 浮体式風力発電の実現可能性に関する総合的評価, 第32回海洋開発シンポジウム, 2007.
2) 川村恭己, 阪本和伸, 須根一, 余寿命便益評価に基づく船体構造の保守管理手法に関する研究, 日本船舶海洋工学会論文集, 第6号, 2007, pp361-369
3) 日鉄防食、防食および補修技術調査報告書(案)、第5回保守管理・調和設計合同WG資料MS-6, 2008/4
4) 鳥田洋治, 外洋上プラットフォームの余寿命便益評価に基づく保守管理手法の検討, 横浜国立大学大学院工学研究科, 平成19年度卒業論文.
5) 矢後清和, 岡分隆太郎, 石田茂善, 大川豊, 日本周辺海域の海洋データベース整備と洋上風力発電の大規模展開の可能性について, 日本風力エネルギー学会・日本風力エネルギー協会合同研究発表会, 2007.
6) 日本造船学会海洋工学委員会性能部会編, 実用浮体の流体力学第1編編, 成山堂書店, 2003.
7) (独)海上技術安全研究所「日本近海の波と風のデータベース