Caesaldecan, a Cassane Diterpenoid from the Leaves of Caesalpinia decapetala

Phan Van Kiem, a Chau Van Minh, a Hoang Thanh Huong, a Jung Joon Lee, b and Young Ho Kim* a,c

a Institute of Natural Products Chemistry, Vietnam Academy of Science and Technology; b College of Pharmacy, Chungnam National University; d College of Pharmacy, Chungnam National University; Daejeon 305–764, Korea. Received September 8, 2004; accepted November 25, 2004

A new cassane diterpenoid, caesaldecan, was isolated from Caesalpinia decapetala with eight known compounds, spathulenol, 4,5-epoxy-8(14)-caryophyllene, squalene, lupeol, trans-resveratrol, quercetin, astragalin, and stigmasterol. The 1H- and 13C-NMR spectra of the new compound were completely assigned by using a combination of 2D NMR techniques, namely, 1H-1H COSY, HMBC, HMQC, and ROESY.

Key words Caesalpinia decapetala; Fabaceae; diterpenoid; cassane; caesaldecan

Caesalpinia decapetala Roth (Alston) (Fabaceae) is a medicinal plant with a wide distribution throughout Northern Vietnam, and continues to be used in traditional Vietnamese medicine as an immunomodulatory and anti-inflammatory agent.1) The genus Caesalpinia is well known for its cassane diterpenoid content, and many different diterpenes have been isolated from this genus.2—11) A previous investigation of the diterpenoid content, and many different diterpenes have been isolated from the leaves of Caesalpinia decapetala.2—11) We report herein the isolation and structural elucidation of a new cassane diterpenoid, caesaldecan (1), and of eight known compounds, spathulenol (2), 4,5-epoxy-8(14)-caryophyllene (3), squalene (4), lupeol (5), trans-resveratrol (6), quercetin (7), astragalin (8), and stigmasterol (9) from the leaves of C. decapetala. This is the first report of compounds 2—4 and 6—8 in C. decapetala.

Caesaldecan (1) was isolated as white crystals, mp 150—153 °C, its molecular formula, C25H38O5, was established by high resolution FAB-MS (Found m/z: 441.2620 [M+Na]+; Calcd for C25H38O5Na: 441.2617). Its IR spectrum had absorptions typical of hydroxyl (3450 cm−1), carboxyl (1710, 1730 cm−1), and ether (1020 cm−1) functionalities. The 1H-NMR spectrum had resonances due to the presence of three tertiary methyl groups at δ 1.18, 1.52, and 1.72, and two secondary methyl groups at δ 0.90 and 0.91. Signals typical of oxymethine protons were evident at δ 4.77 (1H, t, J=2.5 Hz, H-3) and 4.38 (1H, m, H-6), and olefinic proton signals typical of a vinyl moiety were observed at δ 6.80 (1H, dd, J=11.0, 17.5 Hz), 5.09 (1H, dd, J=17.5, 2.3 Hz) and 4.95 (1H, dd, J=11.0, 2.3 Hz).

The 13C-NMR spectrum of 1 revealed the presence of 25 carbons including 6 quaternary, 7 methine, 7 methylene, and 5 methyl carbons. Signals were observed for one carboxyl group at δ 176.6, one carboxylated group at δ 171.4, olefinic carbons at δ 137.2, 135.8, 128.8, and 111.3, and two oxymethine carbons at δ 76.3 and 67.6. In the heteronuclear multiple quantum coherence (HMQC) spectrum, protons at δ 5.09 and 4.95 showed direct connectivity to a carbon at δ 111.3, while the proton at δ 6.80 had direct connectivity to a carbon at δ 135.8. Based on the cassane skeleton, which is typical for genus Caesalpinia, the partial structures, including an isoprenyl moiety and a cassane skeleton, were deduced from the 1H-1H correlation spectroscopy (1H-1H COSY) and HMQC spectra (Fig. 2, bold line), and were connected based on long-range correlations in the heteronuclear multiple-bond correlation (HMBC) spectrum (Fig. 2, Table 1). In the 1H-13C NMR spectrum, the multiplets at δ 1.60 and 1.95 showed cross peaks to a triplet at δ 4.77 (H-3), and to signals at δ 1.20 and 1.42 (H-1) attributed to the H-2 proton. The methine carbinol proton at δ 4.38 (multiplet) showed coupling with the doublet at δ 1.86, and with the multiplets at δ 1.10 and 2.09, assigned to the H-6 proton. A multiplet of the methine proton appearing at δ 2.46 showed cross peaks to both the multiplet at δ 0.95 and the protons H-7 (δ 1.10, 1.20, 1.42, and 1.86).

Fig. 1. Structures of Compounds 1—8

* To whom correspondence should be addressed. e-mail: yhk@cnu.ac.kr © 2005 Pharmaceutical Society of Japan
2.09), assigned to the H-8 proton. The multiplets at δ 1.08 and 1.79 showed couplings with the H-9 proton (δ 0.95), and with protons at δ 1.97 (multiplet) and 2.30 (broad doublet) attributed to the H-11 proton. The assignments of the A, B and C rings were established from detail long-range correlations in the HMBC spectrum as shown in Table 1. Furthermore, in the HMBC spectrum, the proton at δ 6.80 (H-15) showed long-range correlations to carbons at δ 128.8 (C-13)/137.2 (C-14), while the vinyl proton at δ 5.09/4.95 (H-16) correlated with the carbon at 128.8 (C-13), and the methyl protons at δ 1.72 (H-17) correlated with carbons at δ 36.5 (C-8)/128.8 (C-13)/137.2 (C-14). The methylene proton at δ 4.77 (H-3) showed long-range correlations to carbons at δ 176.6 (C-18)/171.4 (C-21)/19.6 (C-19), whereas the proton at δ 2.13 (H-23) correlated with carbons at δ 171.4 (C-21)/22.6 (C-24, C-25). In addition, H-C long-range correlations between the proton at δ 4.38 (H-6) and the carbon at δ 46.0 (C-5), and between the hydroxyl proton at δ 4.30 (6-OH) and the carbon at 46.0 (C-5) were observed in the HMBC. The above data indicated that the vinyl moiety was located at C-13, the methyl group at C-14, the carboxyl group at C-18, the carboxylated moiety at C-3 by an ester linkage, and the hydroxyl group was at C-6. The stereochemistry of 1 was determined from the coupling pattern in the 1H-NMR spectrum and detailed analysis of rotation frame Overhauser effect spectroscopy (ROESY) data as shown in Table 1. In the 1H-NMR spectrum, the H-20 proton was confirmed as equatorial by spin-coupling constants ($J_{eq-ax} = J_{eq-eq}$ 2.5 Hz). In the ROESY spectrum, H-20 (δ 1.18) had cross-peaks with H-19 (δ 1.52) and 6-OH (δ 4.30), indicating that they were all in the same plane and β-oriented, while H-5 (δ 1.86) had cross-peaks with H-6 (δ 4.38) indicating that they were α-oriented. Similarly, H-19 had cross-peaks with H-3 and 6-OH. These findings also confirmed that the carboxyl group must be located at C-18. Based on the above data and the NMR results summarized in Table 1, the structure of 1 was proposed for caesaldecane, its first identification in nature. Cassane diterpenoids in which the C-13 methyl group has migrated to C-14 are common.7,10,12) However, the isoprene moiety has not been found previously in Caesalpinia species. The eight known compounds were identified as spathulenol (2),13) 4,5-epoxy-8(14)-caryophyllene.

Table 1. NMR Assignments of Compound 1

<table>
<thead>
<tr>
<th>C</th>
<th>δ_C</th>
<th>δ_C'</th>
<th>δ_C''</th>
<th>HMBC (H to C)</th>
<th>ROESY</th>
</tr>
</thead>
<tbody>
<tr>
<td>1α</td>
<td>33.7 t</td>
<td>33.4 t</td>
<td>1.42 br d (12.0)</td>
<td></td>
<td></td>
</tr>
<tr>
<td>1β</td>
<td>22.8 t</td>
<td>22.7 t</td>
<td>1.95 m</td>
<td>3, 20</td>
<td></td>
</tr>
<tr>
<td>2α</td>
<td>76.6 d</td>
<td>76.3 d</td>
<td>4.77 t (2.5)</td>
<td>1, 4, 5, 18, H-19</td>
<td></td>
</tr>
<tr>
<td>2β</td>
<td>50.6 s</td>
<td>49.6 s</td>
<td>1.95 m</td>
<td>3, 6, 9, H-6</td>
<td></td>
</tr>
<tr>
<td>3</td>
<td>46.1 d</td>
<td>46.0 d</td>
<td>1.86 d (2.1)</td>
<td>6, 8, 10, H-5</td>
<td></td>
</tr>
<tr>
<td>4</td>
<td>70.1 d</td>
<td>67.6 d</td>
<td>4.38 m</td>
<td>5, 6, H-19, H-20</td>
<td></td>
</tr>
<tr>
<td>7α</td>
<td>40.7 t</td>
<td>40.7 t</td>
<td>2.09 m</td>
<td>3, 10</td>
<td></td>
</tr>
<tr>
<td>7β</td>
<td>36.7 d</td>
<td>36.5 d</td>
<td>2.46 m</td>
<td>9, 10</td>
<td></td>
</tr>
<tr>
<td>8</td>
<td>54.5 d</td>
<td>54.5 d</td>
<td>0.95 m</td>
<td>10, 20</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>37.0 s</td>
<td>36.7 s</td>
<td>1.97 m</td>
<td>12, 13, 14</td>
<td></td>
</tr>
<tr>
<td>11α</td>
<td>26.8 t</td>
<td>26.4 t</td>
<td>2.30 br d (14.5)</td>
<td>3, 4, 5, 19, H-3, 20, 6-OH</td>
<td></td>
</tr>
<tr>
<td>11β</td>
<td>21.6 t</td>
<td>21.4 t</td>
<td>1.79 m</td>
<td>3, 4, 5, 19, H-3, 6-OH</td>
<td></td>
</tr>
<tr>
<td>12α</td>
<td>21.6 t</td>
<td>21.4 t</td>
<td>0.95 m</td>
<td>10, 20</td>
<td></td>
</tr>
<tr>
<td>12β</td>
<td>26.8 t</td>
<td>26.4 t</td>
<td>1.97 m</td>
<td>8, 13, 14</td>
<td></td>
</tr>
<tr>
<td>13</td>
<td>129.6 s</td>
<td>128.8 s</td>
<td>5.09 br d (21.5)</td>
<td>4, 13, 15</td>
<td></td>
</tr>
<tr>
<td>14</td>
<td>136.4 s</td>
<td>137.2 s</td>
<td>12.13 br s (18-OH)</td>
<td>3, 4, 5, 19, H-3, 6-OH</td>
<td></td>
</tr>
<tr>
<td>15</td>
<td>111.2 t</td>
<td>111.3 t</td>
<td>4.95 dd (11.0, 2.3)</td>
<td>12, 13, 14</td>
<td></td>
</tr>
<tr>
<td>16α</td>
<td>16.3 q</td>
<td>16.1 q</td>
<td>1.72 s</td>
<td>8, 13, 14</td>
<td></td>
</tr>
<tr>
<td>16β</td>
<td>181.0 s</td>
<td>176.6 s</td>
<td>12.13 br s (18-OH)</td>
<td>4, 13, 15</td>
<td></td>
</tr>
<tr>
<td>19</td>
<td>19.8 q</td>
<td>19.6 q</td>
<td>5.52 s</td>
<td>3, 4, 5, 19, H-3, 20, 6-OH</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>17.5 q</td>
<td>17.0 q</td>
<td>1.18 s</td>
<td>3, 4, 5, 19, H-3, 6-OH</td>
<td></td>
</tr>
<tr>
<td>21</td>
<td>172.3 s</td>
<td>171.4 s</td>
<td>1.23 m</td>
<td>23, 24</td>
<td></td>
</tr>
<tr>
<td>22</td>
<td>44.0 t</td>
<td>43.5 t</td>
<td>5.09 dd (20.0)</td>
<td>22, 23, 25</td>
<td></td>
</tr>
<tr>
<td>23</td>
<td>26.2 d</td>
<td>25.5 d</td>
<td>2.07 d (3.5)</td>
<td>22, 23, 25</td>
<td></td>
</tr>
<tr>
<td>24</td>
<td>22.7 q</td>
<td>22.6 q</td>
<td>1.91 d (20.0)</td>
<td>22, 23, 24</td>
<td></td>
</tr>
<tr>
<td>25</td>
<td>22.7 q</td>
<td>22.6 q</td>
<td>2.13 m</td>
<td>22, 23, 24</td>
<td></td>
</tr>
</tbody>
</table>

*a) 75 MHz, CDCl$_3$, b) 150 MHz, DMSO, c) 600 MHz, DMSO. Chemical shifts are given in ppm; multiplicities and coupling constant J (in parentheses) in Hz. d) Assignments may be interchanged.
(3), (14) squalene (4), (15) lupeol (5), (16) trans-resveratrol (6), (17) quercetin (7), (18) astragalin (8), (19) and stigmasterol (9) (20) by comparison of the 1H-, 13C-NMR, and MS data with those reported in the literature.

Experimental

Melting points were determined using a Kofler micro-hotstage. IR spectra were obtained on a Hitachi 270-30 type spectrometer using KBr discs. The optical rotations were determined on a JASCO DIP-1000 KUY polarimeter. FAB-MS and HR-FAB-MS were obtained using a JEOL JMS-DX 300 spectrometer. Column chromatography (CC) was performed on a YMC RP-18 column using a MeOH–H2O (7 : 3) system yielded spathulenol (58 mg) as colorless oils. Subfraction A2 was chromatographed on a silica gel column using hexane–ethyl acetate (100 : 1) as eluent to yield squalene (4) (58 mg) as colorless oils. Subfraction A1 was chromatographed on a silica gel column using hexane–ethyl acetate (50 : 1) as eluent to yield spathulenol (2) (18 mg) and 4,5-epoxy-8(14)-caryophyllene (3) (18 mg) as colorless oils. Subfraction A3 was chromatographed on a silica gel column using hexane–ethyl acetate (1:3450 (OH), 2953 (CH), 1710 and 1730 (C=O) and 1020 (C–O–C); positive FAB-MS m/z: 441.2620 [M+Na]+ (Caled for C25H31O2Na: 441.2617); 1H- and 13C-NMR are given in Table 1.

Acknowledgements

The authors wish to thank to the Korea Basic Science Institute for performing the NMR and MS, and Dr. Ha Van Tue of the Institute of Ecology and Biological Resources, VAST, Vietnam for the plant identification. This study was supported by a grant from the Korea-Vietnam international cooperation project.

References