Two New Aromatic Compounds from *Hericium erinaceum* (BULL.: FR.) PERS.1)

Yasunori YAOITA, Kuniko DANBARA, and Masao KIKUCHI*

Tohoku Pharmaceutical University; 4-4-1 Komatsushima, Aoba-ku, Sendai, Miyagi 981–8558, Japan.

Received April 7, 2005; accepted May 26, 2005

Two new aromatic compounds, erinacerins A (1) and B (2), were isolated from the fruiting bodies of *Hericium erinaceum* (BULL.: FR.) PERS. (Hericaceae) together with a known compound, hericenone A (3). The structures of the new compounds were elucidated on the basis of their spectral data. It was found that 1 occurred as a racemate.

Key words *Hericium erinaceum*; Hericaceae; aromatic compound; mushroom

The fruiting bodies of *Hericium erinaceum* (BULL.: FR.) PERS. (Yamabushitake in Japanese, Hericiaceae) are known as an edible mushroom. The constituents of *H. erinaceum* have been previously investigated and shown to contain aro-

![Diagram of compounds 1, 2, and 3](chart1.png)

Chart 1

![Diagram of structures](structure1.png)

Fig. 1. 1H–1H COSY (Bold Line) and HMBC (Full-Line Arrows) Correlations for 1

1. To whom correspondence should be addressed. e-mail: mkikuchi@tohoku-pharm.ac.jp © 2005 Pharmaceutical Society of Japan
tue of our initial preparation.

Compound 2, called erinacerin B, was obtained as an amorphous powder, $[\alpha]_D^{12} + 12.7^\circ$. The molecular formula was determined to be $C_{19}H_{24}O_5$ by HR-El-MS [m/z 314 (M$^+$–H$_2$O)] and 13C-NMR. The IR spectrum showed the presence of hydroxyl groups (3383 cm$^{-1}$), a phthalide (1763 cm$^{-1}$) and a benzene ring (1603 cm$^{-1}$). The 1H- and 13C-NMR spectra of 2 were similar to those of 3, except that the C-5' carbonyl group in 3 was replaced by a hydroxyl group in 2. The position of this hydroxyl group was confirmed by the 1H–1H COSY spectrum, in which H-5 and H-6' showed connectivity to H-2' and H-6'. The absolute configuration of the hydroxyl group at C-5' was determined as S by comparing the specific rotation values of 2 ([$\alpha]_D^{12} + 12.7^\circ$ (MeOH)), (S)-(+)-ipsdienol [4, $[\alpha]_D^{12} + 15.7^\circ$ (MeOH)]11 and (R)(−)-ipsdienol [5, $[\alpha]_D^{12} - 15.3^\circ$ (MeOH)].11 On the basis of the above data, the structure of 2 was represented as shown in the formula.

Experimental

General Procedures Optical rotations were determined using a JASCO DIP-360 digital polarimeter. CD spectra were measured on a JASCO J-720 spectropolarimeter. IR spectra were recorded with a Perkin-Elmer Spectrum One FT-IR spectrophotometer and UV spectra with a Beckman DU-64 spectrophotometer. 1H- and 13C-NMR spectra were recorded on a JEOL JNM-LA 600 (600 and 150 MHz, respectively) and a JEOL JMN-LA 400 (400 and 100 MHz, respectively) spectrometers. Chemical shifts are given on a δ (ppm) scale, with tetramethylsilane as an internal standard. HR-El-MS were recorded on a JEOL JMS-DX 303 mass spectrometer. Column chromatography was carried on a Kieselgel 60 (230—400 mesh, Merck). HPLC was carried out on a Tosoh HPLC system (pump, CCPD; detector, RI-8010).

Fungal Material The fresh fruiting bodies of *Hericium erinaceum* (from Sendai, Miyagi Prefecture, Japan) were purchased in a food market.

Extraction and Isolation The fresh fruiting bodies of *H. erinaceum* (1.3 kg) were extracted three times with Et$_2$O at room temperature for 2 weeks. The Et$_2$O extract (6.8 g) was chromatographed on a silica gel column (3383 cm$^{-1}$), a phthalide (1763 cm$^{-1}$) and a benzene ring (1603 cm$^{-1}$). The 1H- and 13C-NMR spectra of 2 were similar to those of 3, except that the C-5’ carbonyl group in 3 was replaced by a hydroxyl group in 2. The position of this hydroxyl group was confirmed by the 1H–1H COSY spectrum, in which H-5 and H-6’ showed connectivity to H-2’ and H-6’.

Acknowledgments We are grateful to Mr. S. Sato and Mr. T. Matsuki of Aichi Prefectural Pharmaceutical University for their help. We also thank Mr. S. Sato and Mr. T. Matsuki of Aichi Prefectural Pharmaceutical University for their help. We also thank Mr. S. Sato and Mr. T. Matsuki of Aichi Prefectural Pharmaceutical University for their help.

References and Notes

