Petiolins F—I, Benzophenone Rhamnosides from *Hypericum pseudopetiolatum* var. *kiusianum*

Naonobu Tanaka, a Takaaki Kubota, a Yoshiki Kashiwada, b Yoshihisa Takaishi, b and Jun’ichi Kobayashi a, a

a Graduate School of Pharmaceutical Sciences, Hokkaido University; Sapporo 060-0812, Japan; and b Graduate School of Pharmaceutical Sciences, University of Tokushima; Tokushima 770-8505, Japan.

Received June 29, 2009; accepted July 27, 2009; published online July 28, 2009

Four new benzophenone-O-rhamnosides, petiolins F—I (1—4), were isolated from aerial parts of *Hypericum pseudopetiolatum* var. *kiusianum*, and the structures were elucidated by spectroscopic data and chemical means.

Key words: *Hypericum pseudopetiolatum* var. *kiusianum*; benzophenone; rhamnoside; Clusiaceae

The genus *Hypericum* (family Clusiaceae) are known to be a traditional medicine for the treatment of burns, bruises, swelling, inflammation, and anxiety as well as bacterial and viral infections. 1—3 In our continuing search for new compounds from *Hypericum* spp.; 3—7 four new benzophenone-O-rhamnosides, petiolins F—I (1—4), were isolated from aerial parts of *H. pseudopetiolatum* var. *kiusianum*. In this paper, we describe the isolation and structure elucidation of petiolins F—I (1—4).

The aerial parts of *H. pseudopetiolatum* var. *kiusianum* were extracted with MeOH, and the extracts were partitioned by n-hexane, EtOAc, and H2O. EtOAc-soluble portions were subjected to a Sephadex LH-20 column (H2O/MeOH), a Toyopearl HW-40F column (H2O/MeOH), and a silica gel column (CHCl3/MeOH) chromatographies to afford a mixture of benzophenone glycosides, which was purified by C18 HPLC (MeOH/H2O) to yield petiolins F (1, 0.0012%), G (2, 0.0038%), H (3, 0.0006%), and I (4, 0.0004%).

The molecular formula of petiolin F (1), C19H20O10 was established by HR-electrospray ionization (ESI)-MS [m/z 431.0945 (M+Na)§ , Δ: −0.0004%]. IR absorptions at 3421 and 1629 cm−1 indicated the presence of hydroxy and carbonyl functionalities. The 1H-NMR spectrum showed proton signals of a 1,3,5-trisubstituted benzene ring [δH 6.58 (2H, d, J=2.3 Hz), 6.51 (1H, t, J=2.3 Hz)], a 1,2,3,5-tetrasubstituted benzene ring [δH 6.37 and 6.12 (1H each, d, J=2.0 Hz)], an anomic proton [δH 5.26 (1H, d, J=1.5 Hz)], and a secondary methyl group [1.16 (3H, d, J=6.3 Hz)] (Table 1). The 13C-NMR spectrum revealed the presence of a carbonyl (δC 198.2) and 12 aromatic carbons, together with resonances for a sugar moiety (Table 1). From these data, 1 was presumed to be a benzophenone glycoside. 13C-NMR chemical shifts of the sugar moiety were coincident with those of quercetin-3-O-α-rhamnoside. 8 The aglycone of 1 was assigned as 2’,3’,4’,5,6’-pentahydroxybenzophenone on the basis of heteronuclear multiple bond correlations (HMBC) (Fig. 1) and coupling patterns of aromatic protons in the 1H-NMR (Table 1). The HMBC correlation for H-1 to C-2 indicated that the rhamnosyl moiety was connected to C-2’ through an oxygen atom, and its α-glycoside linkage was derived from the value for J1,2’H (172 Hz) of C-1” obtained from the non-decoupled heteronuclear single quantum coherence (HSQC) spectrum. 9 Methanalysis of petiolin F (1) yielded methyl α-hexamethylenemalonate, which was assigned as 1-form by comparison of its optical rotation with that of authentic methyl α-L-rhamnopyranoside. Thus, the structure of 1 was elucidated to be 2’,3’,4’,5,6’-pentahydroxybenzophenone-2’-O-α-L-rhamnoside.

Pettolin G (2) showed the pseudomolecular ion peak at m/z 473 (M+Na)+ in the ESI-MS, and the HR-ESI-MS revealed the molecular formula to be C21H22O11. Although 1H- and 13C-NMR data for petiolins F (1) and G (2) in Acetone-d6 are shown in Table 1.

![Chart 1. Petiolins F—I (1—4)](image)
The rhamnose moiety was assigned as L-form by the same procedure as described for I. Thus, the structure of 2 was ascribed to be 2',3',4',5,6'-pentahydroxybenzophenone-2'-O-α-rhamnopyranoside (Fig. 1; Table 1). From these data, 2 was estimated to be 2',3',4',5,6'-pentahydroxybenzophenone-2'-O-α-rhamnose possessing an acetoxy group. The HMBC cross-peak of H-4" to acetoxy carbonyl carbon and a low-field shift of H-4" (∆δH 4.79 in 2; ∆δH 3.30 in I) indicated that the acetoxy group was connected to C-4". The rhamnose moiety was assigned as l-form by the same procedure as described for I. Thus, the structure of 2 was ascribed to be 2',3',4',5,6'-pentahydroxybenzophenone-2'-O-α-rhamnose.

Petiolin H (3) had a molecular formula of C28H26O12 deduced from HR-ESI-MS. The 1H- and 13C-NMR data (Table 1) revealed the presence of a 2',3',4',5,6'-pentahydroxybenzophenone moiety, an acetoxy group, a benzoyl group, and a rhamnosyl moiety. Connectivities of the acetoxy group and the benzoyl group to the rhamnosyl moiety were elucidated by HMBC correlations for H-3" to the carbonyl carbon of the benzoyl group (∆δC 165.0), and H-4" to acetoxy carbonyl carbon (∆δC 170.0), respectively. The HMBC cross-peak of H-1" to C-2" and 1JCH value (174 Hz) of C-1" indicated the connectivity of C-2" and C-1" by an α-glycoside linkage. The rhamnose moiety was elucidated to be l-form in the same manner as described for I. Thus, the structure of 3 was elucidated to be 2',3',4',5,6'-pentahydroxybenzophenone-4'-acetoxyl-3'-benzoyl)-O-α-l-rhamnose.

Petiolin I (4) had the same molecular formula as that of 3. The 1H- and 13C-NMR spectral data of 4 (Table 2) revealed the presence of the same functional groups as found in 3, while differences were observed for the proton resonances for the rhamnosyl moiety. The chemical shifts of H-2" (∆δH 5.07) and H-4" (∆δH 4.96) suggested that a benzoyl and an acetoxy groups were attached to C-2" and C-4", respectively. Positions of the acetoxy group and the benzoyl group were assigned as 2"- and 3"-pentahydroxybenzophenone-(4'-acetoxyl-3'-benzoyl)-O-α-l-rhamnose.

Experimental

General: Optical rotations were recorded on a JASCO P-1030 digital polarimeter. IR and UV spectra were recorded on a JASCO FT/IR-230 and Shimadzu UV-1600PC spectrophotometers, respectively. NMR spectra were measured with a JEOL ECA 500 spectrometer. The 2.05 and 205.7 ppm resonances of residual acetone were used as internal references for 1H- and 13C-NMR spectra, respectively. ESI-MS spectra were recorded on a JEOL JMS-T100LP.

Plant Material: Hypericum pseudopetiolatum var. kiussianum was collected in Kochi Prefecture, Japan in August 2005. Herbarium specimens were deposited in the botanical garden of the University of Tokushima (specimen number: UTP98013).

Extraction and Isolation: The aerial parts of H. pseudopetiolatum var. kiussianum (320 g) were extracted with MeOH (31×3), and the extracts were partitioned successively with n-hexane (300 ml×3), EtOAc (300 ml×3), and H2O (300 ml). The EtOAc-soluble portions were subjected to a Sephadex LH-20 column (H2O/MeOH, 9/1 to 0/10), a silica gel column (CHCl3/MeOH, 95/5 to 0/10), and C18 reversed-phase HPLC (Mighty Sil RP-18, Kanto Chemical Co., Ltd., 10×250 mm; flow rate 3.0 ml/min; UV detection at 254 nm; eluent MeOH/H2O; 3, 7) to afford petiolins F-I (1, 3.9 mg, 2, 1.12 mg, 3, 1.9 mg, 4, 1.4 mg).

Petiolin F (1): Colorless amorphous solids; [α]23D +5.8 (c = 0.87 MeOH); UV (MeOH) λmax 280 (ε 4650) and 307 (5730) nm; IR (KBr) νmax 3421 and 1629 cm⁻¹; 1H- and 13C-NMR data (Table 1); ESI-MS m/z 431 (M+Na)⁺; HR-ESI-MS m/z 431.0945 (M+Na)⁺ (Calcd for C19H20O10Na, 431.0954).

Petiolin G (2): Colorless amorphous solids; [α]23D -4.9 (c = 2.45 MeOH); UV (MeOH) λmax 277 (ε 6920) and 308 (8340) nm; IR (KBr) νmax 3407, 1723, and 1627 cm⁻¹; 1H- and 13C-NMR data (Table 1); ESI-MS m/z 473 (M+Na)⁺; HR-ESI-MS m/z 473.1048 (M+Na)⁺ (Calcd for C22H25O11Na, 473.1060).

Petiolin H (3): Colorless amorphous solids; [α]23D -54.0 (c = 0.38 MeOH); UV (MeOH) λmax 281 (ε 8660) and 306 (8800) nm; IR (KBr) νmax 3417, 1723, and 1627 cm⁻¹; 1H- and 13C-NMR data (Table 2); ESI-MS m/z 577 (M+Na)⁺; HR-ESI-MS m/z 577.1323 (M+Na)⁺ (Calcd for C22H25O11Na, 577.1322).

Petiolin I (4): Colorless amorphous solids; [α]23D +19.2 (c = 0.27 MeOH); UV (MeOH) λmax 275 (ε 8880) and 305 (8070) nm; IR (KBr) νmax 3442, 1727, and 1619 cm⁻¹; 1H- and 13C-NMR data (Table 2); ESI-MS m/z 577 (M+Na)⁺; HR-ESI-MS m/z 577.1331 (M+Na)⁺ (Calcd for C22H25O11Na, 577.1322).

Meethanolysis of Petiolins F-I (1-4): Petiolins F-I (1-4, 0.7, 0.5, and 0.5 mg, respectively) were treated with 5% HCl/MeOH (50 ml) at 100°C for 16 h, individually. After evaporation of the solvent, the residue of each sample was subjected to a silica gel column (EtOAc/MeOH/H2O, 20:3:2) to give methyl α-rhamnopyranoside (from I, 0.13 mg, [α]23D -67.9 (c = 0.03, MeOH); from 2: 0.02 mg, [α]23D -61.0 (c = 0.08, MeOH); from 3, 0.15 mg, [α]23D -71.4 (c = 0.04, MeOH); from 4: 0.17 mg, [α]23D -74.4 (c = 0.04, MeOH) and 2',3',4',5,6'-pentahydroxybenzophenone. 2',3',4',5,6'-Pentahydroxybenzophenone: 1H-NMR (acetone-d6) δH 6.52 (2H, d, d, H = 3.5 Hz). The coupling constants are given in parentheses.
$J = 1.6 \text{ Hz}$), 6.47 (1H, $J = 1.6 \text{ Hz}$), 5.96 (2H, s); HR-ESI-MS m/z: 285.0382 (M+Na)$^+$ (Calcd for C$_{13}$H$_{10}$O$_6$Na, 285.0375). Authentic α-rhamnose was treated with 5% HCl/MEOH as described above to afford methyl α-α-rhamnopyranoside ($[\alpha]_D -64.8 \ (c = 0.19, \text{MeOH})$). R_f values of methyl α-α-rhamnopyranosides derived from 1—4 were consistent with that of authentic methyl α-α-rhamnopyranoside (R_f value: 0.66, silica gel TLC, EtOAc/MeOH/H$_2$O, 20 : 3 : 2).

Acknowledgements We thank T. Akiyama and M. Inagaki, the Kochi Prefectural Makino Botanical Garden, for collection and botanical identification of the plant, S. Oka and A. Tokumitsu, Center for Instrumental Analysis, Hokkaido University, for measurements of HR-ESI-MS. This work was partly supported by a Grant-in-Aid for Scientific Research from the Ministry of Education, Culture, Sports, Science and Technology of Japan.

References