Hydrogen–Deuterium (H–D) Exchange Reaction of Warfarin in D₂O Solution

Chisato TODE, Atsuko TAKEUCHI, Seigo IWAKAWA, Akitoshi TATSUMI, and Makiko SUGIURA*
Kobe Pharmaceutical University; Motoyamakita-machi, Higashinada-ku, Kobe 658–8558, Japan.
Received October 10, 2008; accepted April 2, 2009; published online April 10, 2009

To prove the presence of a hydrogen–deuterium (H–D) exchange reaction, ¹H- and ¹³C-NMR spectra of warfarin were measured in solvents containing D₂O and H₂O. In D₂O or D₂O/dimethyl sulfoxide (DMSO)-d₆ solvent, signal pattern changes were observed on H12 and H11 as well as 14 methyl protons over time while no changes were observed on H₂O or H₂O/DMSO-d₆ solvent. The observed changes in the solvents containing D₂O were concluded to be caused by the H–D exchange reaction on H12, the process of CH₂→CHD→CD₂. MS spectroscopy also confirmed these H–D exchanges. The kinetics of this reaction were analyzed as the successive reaction, and the mechanism was also proposed.

Key words warfarin; hydrogen–deuterium exchange reaction; ¹H-NMR; ¹³C-NMR; successive reaction

Warfarin (1) is a common coumarin-type anticoagulant used widely in hematological diseases, and is well known to be highly bound in circulation, with most of this binding taking place with the protein human serum albumin (HSA). ¹¹ In solution, 1 is present as the equilibrium between an open chain type and a cyclic hemiketal type, as shown in Chart 1.²) Since the position of this equilibrium depends on the solvent polarity, hydrogen donating/accepting ability, and pH,³,⁴ the NMR spectrum pattern varies with solution conditions. For example, 1 exists as a cyclic hemiketal form in dimethyl sulfoxide (DMSO)-d₆ solution⁵ and, moreover, 1 preferably adopts the cyclic hemiketal type rather than the open chain type in low dielectric constant solvents.⁵) However, in general, lower pH shifts the equilibrium to the cyclic type, and the open chain type exists at neutral and higher pH, and this nature refers to not only H₂O solution but D₂O and mixture of H₂O or D₂O and DMSO-d₆ solution.⁶)

Although, NMR measurement of this drug often uses D₂O as a solvent for studies related to biological fluids, some hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been mentioned as resulting from the presence of the H–D exchange. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrogen–deuterium (H–D) exchange reactions have often been overlooked. Recently, a study of the stability of hydrog

Results and Discussion

H–D Exchange Reaction of Warfarin The ¹H spectrum for Sample 1 immediately after sample preparation is shown in Fig. 1, which indicated that an open chain type mainly exists in this solution. Other samples (Samples 2—5) also show the similar spectrum pattern of an open chain type, although the signal patterns were ABX for H12 in deuterated phosphate buffer were discussed as resulting from molecular decomposition.³) This conclusion has been a question for us and we have regarded these spectrum changes to be an exchange with deuterium.

In this work, ¹H- and ¹³C-NMR of 1 were measured in D₂O, H₂O, D₂O/DMSO-d₆, and H₂O/DMSO-d₆ over many days, the presence of the H–D exchange was proved, and a mechanism of this reaction was further discussed.

Experimental

Racemic warfarin (1) was used for all experiments reported here. Both the deuterated phosphate buffer (D₂O) and phosphate buffer (H₂O) used here were prepared at pH (pD) 7.4. For the NMR measurements, five types of 1 samples were prepared: each 0.6 mg of 1 in deuterated phosphate buffer 0.8 ml and phosphate buffer (H₂O) 0.8 ml (Samples 1 and 2), 2.9 mg of 1 in a mixture of deuterated phosphate buffer and DMSO-d₆(1/1) 0.8 ml (Sample 3), 3.4 mg of 1 in a mixture of phosphate buffer (H₂O) and DMSO-d₆(1/1) 0.8 ml (Sample 4), and 4.7 mg of 1 in a mixture of deuterated phosphate buffer and DMSO-d₆(3/5) 0.8 ml (Sample 5). The concentrations of the samples were 2.4 mmol/l (Samples 1 and 2), 11.8 mmol/l (Sample 3), 13.8 mmol/l (Sample 4), and 19.1 mmol/l (Sample 5). DMSO-d₆ was added to the phosphate buffer to increase the solubility of 1.

¹H- and ¹³C-NMR spectra were measured with a Varian Unity-INOVA 500 and/or VNMRS 500 (¹H: 499.8 MHz, ¹³C: 125 MHz) at room temperature. The large H₂O or HOD signal was suppressed by presaturation or with WET sequence.⁸) ¹H spectra were measured 16 times and 10 times for Samples 1 and 2, respectively, during 0—125 d, and 26 times for Samples 3 and 4 during 0—192 d after sample preparation. For Sample 5, ¹H spectra were measured 20 times and ¹³C spectra were measured 12 times during 0—106 d.

All MS data were measured in the positive ion mode with an Applied Biosystems API3000 LC-MS/MS system equipped with an electrospray ionization (ESI) interface. All samples were stored at room temperature during the measurement period.

Chart 1. Equilibrium of 1 in Solution
Two kinds of diastereomers exist for a cyclic hemiketal due to two chiral centers.

* To whom correspondence should be addressed. e-mail: makiko-s@kobepharma-u.ac.jp © 2009 Pharmaceutical Society of Japan
of the H12 signal, the triplet signal of H11 became a doublet and the overlapped pattern of the doublet with the singlet became a singlet. The similar changes were observed on Sample 3 of the DMSO-d6/D2O solvent mixture (Fig. 2C).

In contrast, for Sample 2 of H2O and Sample 4 of the DMSO-d6/H2O solvent mixture, no changes in the spectrum patterns of H12 and H11 were observed, as shown in Figs. 2B and D. No change in the solvent containing H2O implied that the changes of H12 of Sample 1 and Sample 3 were due to the H–D exchange reaction, that is, the process of CH2→CHD→CD2 on H12. The new doublet signal of H12 can be regarded as CHD signal and its broadening may be due to the quadrupole effect of deuterium.

Figure 3 shows the 13C spectrum of Sample 5 immediately after preparation and changes in the spectrum over time. The 1H spectrum changes of this sample were similar to those of
Sample 3 although the rate of change was slower because of the decreasing D\textsubscript{2}O portion. Figure 3B shows the change of the C12 signal, the sharp signal of C12 of 47.04 ppm becoming smaller, and the appearance of a new broader signal at a higher field. These observations agree with a decrease in CH\textsubscript{2} and the appearance of CHD and CD\textsubscript{2}. The higher field shift of the new signal may be due to the heavy atom effect of deuterium9-11 and the quadrupole effect to broaden the signal.

The multiple editing heteronuclear single-quantum correlation (HSQC) spectra were also measured several times during 0—27 d after sample preparation of Sample 5. As shown in Fig. 4, these spectra visually showed the changing of CH\textsubscript{3}CH\textsubscript{2}CD on H/C12. At first, the down peak indicating CH\textsubscript{3} was observed for H/C12 followed by the appearance of small up peak close to the down peak, implying the presence of CH on H/C12. The up peak at H/C12 became larger and the down peak gradually decreased. At 27th day, the down peak replaced the up one for H/C12, completely.

In the 13C spectrum, although several signal broadenings were observed, the most interesting observation was the changes of the C3 signal, as shown in Fig. 3C, which showed similar changes to those of the C12 signal. The original peak gradually shortened and a new broad peak appeared shifted to a higher field, which seemed to be due to the heavy atom effect of CHD or CD\textsubscript{2} on C12.9—11

Figures 2A and C show changes in the signal pattern on 14 methyl protons, in which the new higher shifted signals seemed to be triplet. These changes were also due to the H—D exchange reaction of CH\textsubscript{3}, CH\textsubscript{3}CH\textsubscript{2}—CHD—CHD—CD\textsubscript{2} and signal splittings to triplet were due to a coupling with deuterium. The higher field change reaction of CH\textsubscript{3}, CH\textsubscript{3}CH\textsubscript{2} replaced the up one for H/C12, completely.

Mechanism and Kinetics of H—D Exchange Reaction

Figure 5 shows plots of the total integrated peak area of the H12 signals normalized to the number of protons vs. the passage of time for Sample 3. The rapid reductions from 2 to 1 proton portions were observed, followed by reductions slowly approaching zero. Similar plots were drawn for Samples 1 and 5, although the rates of these changes were slightly different.

The mechanism for this H—D exchange reaction can be proposed as shown in Chart 2. Considering this mechanism, the changes in H12 of Sample 3 over time are regarded as the successive reaction of CH\textsubscript{3}→CHD→CD\textsubscript{2}. The exchanges of CH\textsubscript{2} and CHD are represented as Eqs. 1 and 2,

$$-d[\text{CH}_3]/dt=k_1[\text{CH}_3]$$

$$d[\text{CHD}]/dt=k_1[\text{CH}_3]-k_2[\text{CHD}]$$

where \(k_1\) and \(k_2\) are kinetic constants for CH\textsubscript{3}→CHD and CHD→CD\textsubscript{2}, respectively, and [CH\textsubscript{3}] and [CHD] are the amount of CH\textsubscript{3} and CHD, respectively. Equation 1 leads to Eq. 3 and combination of Eqs. 2 and 3 leads to Eq. 4.

$$[\text{CH}_3]=[\text{CH}_3][\exp(-k_1t)]$$

$$[\text{CHD}]=[k_1/(k_1-k_2)][\text{CH}_3][\exp(-k_2t)]$$

Since, the total integrated peak area of the observed H12 signal of Sample 3 should be [CH\textsubscript{3}]+1/2[CHD] and [CH\textsubscript{3}]\textsubscript{0}=2, the observed plots on Fig. 5 should decay according to Eq. 5.

$$2\exp(-k_1t)+\{k_1/(k_1-k_2)\}[\exp(-k_2t)]$$

The observed plots on Fig. 5 were analyzed with a nonlinear
least squares fit to Eq. 5, resulting $4.9 \times 10^{-3} \text{h}^{-1}$ for k_1 and $1.6 \times 10^{-4} \text{h}^{-1}$ for k_2. Correlation coefficient of 0.993 was obtained, giving a good fit.

If, in the mechanism shown in Chart 2, the double bond on the transition state forms on C13–C14 and not on C12–C13, the 14 methyl protons would be deuterated, as can be observed on Samples 1 and 3.

Conclusion

1H- and 13C-NMR spectra of warfarin were measured in solvents containing D$_2$O and H$_2$O. Mostly, the H12 signal pattern changed in D$_2$O, but no changes could be observed on the H$_2$O samples. The observed changes on H12 were concluded to be due to the H–D exchange reaction, the process of CH$_2$→CHD→CD$_2$. MS spectroscopy also confirmed these H–D exchanges.

The decrease of the total H12 signals over time was analyzed as the successive reaction, as shown in Fig. 5. This analysis supports the proposed mechanism shown in Chart 2.

References