Discovery, Synthesis, and Evaluation of Small-Molecule Signal Transducer and Activator of Transcription 3 Inhibitors

Zhi-Bing Shi, a Dan Zhao, a Yan-Yan Huang, b Yun Du, a Xiang-Rong Cao, c Zhu-Nan Gong, c Rui Zhao, b and Jian-Xin Li a* *a State Key Laboratory of Analytical Chemistry for Life Science, School of Chemistry and Chemical Engineering, Nanjing University; Nanjing 210093, P. R. China; b Beijing National Laboratory for Molecular Sciences, Laboratory of Analytical Chemistry for Life Science, Institute of Chemistry, Chinese Academy of Sciences; Beijing 100080, P. R. China; and c Jiangsu Key Laboratory for Molecular and Medical Biotechnology, Nanjing Normal University; Nanjing 210097, P. R. China. Received August 22, 2012; accepted September 15, 2012

The signal transducer and activator of transcription 3 (STAT3) oncogene is a promising molecular target and its inhibitors have great potential as anticancer drugs. To identify novel and STAT3-selective inhibitors, a virtual screening based on Specs and Maybridge databases was conducted and a 6,6'-bibenzoxazole type small molecule, compound 3a with a inhibition constant K_i value of 494.32 nM to STAT3 was explored. Further, a novel series of derivatives originally derived from 3a was synthesized and evaluated through cell-based assays using human breast cancer cell lines, MDA-MB-468 and MCF-7 with or without constitutive expression of STAT3, respectively. In the series, 3a, 3c, 3d and 4e showed a better inhibitory activity with a good selectivity. Among them, 3a and 3c significantly inhibited STAT3 protein level and also displayed binding affinity for STAT3 that detected with flow injection analysis-quartz crystal microbalance (FIA-QCM) analysis system. The results provided a new lead for future design and development of potent STAT3 inhibitors.

Key words signal transducer and activator of transcription 3; inhibitor; cancer; bibenzoxazole

The signal transducers and activators of transcription (STATs) are a class of transcription factor proteins with seven members including 1, 2, 3, 4, 5a, 5b and 6 that regulate cell growth and survival by modulating the expression of specific target genes.1,2) STAT3, a member of STATs family, was identified by homology screening of cDNA libraries.3) It is found to be activated by epidermal growth factor (EGF), interleukin-6 (IL-6), and several other growth factors and cytokines that share the gp130 receptor subunit and its homologs.4) In normal cells, the activation of STAT3 is rapid and transient. Constitutive activation of STAT3 is frequently detected in the specimens from cancer patients with advanced diseases and a number of tumor cell lines, but not in normal epithelial cells, and also identified as an essential step during the transition of normal cells to neoplastic cells.5,6) The structure of STAT3 is composed of an amino-terminal domain, a coiled-coil domain, a DNA-binding domain, a linker, a Src Homology 2 (SH2) domain, and a transcriptional activation domain.7) The STAT3 signal pathway is composed of several distinct steps,5) among them, the dimerization of two STAT3 monomers through SH2 domains is a decisive event for its activation and transcriptional activity.8) Blocking dimerization through small modules provides a promising approach to the development of molecularly targeted therapies for the treatment of cancers. Since the X-ray structure of STAT3 dimer complexing with DNA was reported by Becker,9) the design of SH2 inhibitors has been actively performed for anticancer drug discovery.

Currently, two main approaches are being performed in the design of small molecule inhibitors that suppress STAT3 dimerization. The first one is peptidomimetics, such as ISS610,10) ISS840 and others.11,12) The peptide-based ligands usually achieve quite high binding affinities to STAT3, but they usually have poor or no cellular activity that limits the application prospect of such compounds. The second one is non-peptidic small molecules, most of them, such as S3I-M2001,13) STA-21,14) S3I-201,15) more recent STX-0119,16) and others17) were identified through structure-based virtual screening of chemical libraries (Fig. 1). Those compounds are generally cell permeable and have great potential for further research and development, however, most of them have weak binding affinities or a lower selectivity to STAT3. Therefore, there is still a great need to develop novel molecules with better bioactivity and selectivity to STAT3.

In the present study, as an effort to develop novel small molecule STAT3 inhibitors, we report the discovery of a small molecule STAT3 inhibitor, 2,2'-bis(arylsulphonylaminomino)-6,6'-bibenzoxazoles (3a) through a virtual screening of 2 databases, and synthesis of the derivatives originally derived from 3a. The bioactivity and the selectivity of the compounds were evaluated using two human breast cancer cell lines, MDA-MB-468 and MCF-7 with or without constitutive expression of STAT3, respectively. Furthermore, inhibitory activity of the compounds with potent bioactivity on STAT3 protein level and the binding affinity to STAT3 were also assayed.

Results and Discussion

As mentioned above, to be activated, STAT3 must firstly form a dimer via its SH2 domain and then translocate to the nucleus to targeted genes.9) Therefore, blocking of the dimerization of STAT3 monomers is directly associated STAT3 inhibitors. In order to discover basic skeleton of the inhibitors, we conducted a virtual screening against the STAT3 SH2 domain using the available databases including Specs with 321374 compounds and Maybridge with 79299 ones. The 3D structures of those compounds were download from ZINC database18) and used during the docking studies. The crystal structure of dimerized STAT3 at 2.25 Å was obtained from RCSB protein databank (PDB code: 1BG1). Autodock 4.219)
and PyRx 0.5 programs were employed to the virtual screening. The AutoDockTools was used to prepare the screening target, chain B of protein 1BG1 and water were removed from the structure and only monomer A was used as the docking target. All hydrogens were added then non polar hydrogens were merged. The Grid center was set SH2 domain and the GridBox was set big enough to cover the entire dimerization interface. Lamarckian Genetic Algorithm was used as a searching method, the number of GA runs was set at 1k.

The docking result was rearranged by the binding energy (see Supplementary data), compound 3a with bis-oxazole skeleton and the binding energy of -8.6kcal/mol and inhibition constant K_i value of 494.32nm was selected from the above rows for further study. The predicted binding model (Fig. 2) showed that 3a has significant interactions with Lys591, Arg636, Lys626, and Glu635. Structure of two analogues 3d and 3i were also found in ZINC database (Chart 1), the docking model showed similar interactions with STAT3 SH2 domain.

Bis-oxazole, as an important structure motif exist in many natural products, its derivatives such as hennoxazole and diazonamide A possess significant bioactivities including antifungal, cytotoxic, anthelmintic properties and so on.\(^{20,21}\)

To confirm the docking results and further get preliminary structure–activity relationship (SAR), compound 3a and its derivatives 3b–1 were designed and synthesized, and the preparations of derivatives 4a–g (monomers) of the half structure of the 3a were also performed, respectively. The synthetic routes of 3a–f\(^{21}\) and 4a–g analogues were outlined in Chart 1. Firstly, the commercially available starting materials, arylsulfonamide 1a–l were reacted with carbon disulfide (CS\(_2\)) in an alkaline medium using \(N,N\)-dimethylformamide (DMF) as solvent to form corresponding intermediates. The intermediates were successively reacted with dimethylsulfate (Me\(_2\)SO\(_4\)) as a methylation agent for 2h, and the reaction products were treated with water without any isolation processes to provide compounds 2a–l. Then, the heterocyclizations were conducted by reaction of 2a–l with 3,3'-dihydroxybenzidine in the presence of potassium hydroxide (KOH), the products were treated with water and recrystallized in methanol to afford the target compounds 3a–l with satisfactory yields (see Supplementary data).

There were about three methods to synthesize the skeleton of compounds 4a–g\(^{23–25}\). Based on the synthetic method of 3a–l, we designed a novel and simple synthetic route of 4a–g. Compounds 2a–l were reacted with O-aminophenol with different substitutions, respectively, to directly provide analogues 4a–g with good yields.

With the above synthesized compounds in hand, the anti-proliferative activity of the compounds against breast cancer cell line (MDA-MB-468) with constitutive expression of STAT3 was firstly evaluated using a 3-(4,5-dimethylthiazol-2-yl)-2,5-diphenyltetrazolium bromide (MTT) assay. The cells were treated with each compound at the concentrations of 1 \(\mu\text{M}\), 10 \(\mu\text{M}\) and 100 \(\mu\text{M}\) for 48h, and the results are summarized in Table 1.

As can been seen from Table 1, the same as the virtual screening result, parent compound 3a showed a inhibitory activity on MDA-MB-468 cells at 100 \(\mu\text{M}\) concentration, while no activity at 10 \(\mu\text{M}\). The derivatives 3c, 3d and 4e displayed a better activity compared with 3a even at 10 \(\mu\text{M}\). Unfortunately, compounds 3b, 3e–l and the monomers 4a–g except for 4e exhibited almost no activity on the cells at 10 \(\mu\text{M}\). Above data clearly revealed that the substitution at moiety of arylsulfonamide in 3a–l gave a great impact on the activity. Meta and para-methyl substitutions elevated the activity, while ortho-methyl group damaged the activity. The halogen substitutions at any positions of arylsulfonamide moiety deactivated the derivatives. The activity of the monomers (4a–g) was weaker than that of 3a–l, suggesting that to get better activity, linkage of two basic skeletons was essential, which was almost in agreement with docking results. Compared with reported non-peptidic small-molecule STAT3 inhibitors such as S3I-M2001 and STX-0119, the present compounds showed comparative activity on MDA-MB-468, while, the compounds were easier to synthesize from sulfonamides compared with preparations of S3I-M2001 and STX-0119 or other small-molecule STAT3 inhibitors.\(^{13–17}\)

In order to understand the inhibitory selectivity of those compounds with better activity, another breast cancer cell line, MCF-7 cells with no constitutive expression of STAT3 was involved. Four compounds 3a, 3c, 3d and 4e at 100 \(\mu\text{M}\) concentration were tested. As shown in Fig. 3, four compounds displayed no or very weak suppressive activity toward MCF-7, suggesting those compounds had a good inhibitory selectivity on STAT3.

In order to verify whether the observed inhibitory activity on MDA-MB-468 cells is related to the STAT3 protein, the STAT3 protein level of the cells cultured with compounds 3a, 3c, 3d and 4e was assayed with a STAT3 ELISA kit. As shown in Fig. 4, 3a and 3c at 100 \(\mu\text{M}\) inhibited more than 70\% STAT3 protein, while 3d and 4e did not display suppressive activity. Because activation of STAT3 leads to cell-cycle progression, anti-apoptotic effects, and tumor invasion and metastasis,\(^{26}\) the current results revealed that 3a and 3c inhibited the proliferation of MDA-MB-468 cells at least via a suppression of STAT3 protein content.
In order to understand the interaction of the inhibitors and STAT3, flow injection analysis-quartz crystal microbalance (FIA-QCM) binding experiments with lead inhibitors 3a and 3c were conducted with STAT3 protein immobilized QCM chip. As an extremely sensitive surface mass sensor, quartz crystal microbalance (QCM) has been used for the measurement of mass change in a variety of biological studies and has become an ideal method to entirely monitor the association and disassociation processes of molecules in real time without the use of labels.27) Combined with flow injection analysis (FIA), QCM allows online monitoring of the analyte binding, and provides a much more convenient tool for the determination of real-time study of analytes interactions.28) Because the commercial available STAT3 solution contains glutathione, to eliminate its interference, a STAT3 modified QCM chip (QCM-S) and only glutathione modified chip (QCM-G) were prepared. The binding curves of frequency versus time of 3a under the optimal conditions were recorded as graphs and illustrated in Fig. 5. From the binding curves, the binding equilibrium constants of 3a were evaluated to be 4.31×10³ L/mol and 8.50×10² L/mol on QCM-S (Fig. 5A) and QCM-G (Fig. 5B) chips, respectively. The results clearly demonstrated that 3a strongly bound with immobilized STAT3. While, 3c displayed only a weak binding affinity with STAT3, because the binding equilibrium constants were 6.89×10² L/mol on QCM-S chip and 6.81×10² L/mol on QCM-G chip, which
suggested that the main binding effect was caused from glutathione. As 3c exhibited inhibitory effect on STAT3 level, it is possible that 3e might inhibit both STAT3 and upstream kinase, to clarify it, further research work is essential.

Conclusion

In summary, we have identified a series of novel STAT3 targeting small molecule inhibitors through virtual screening, preliminary structure optimization and in vitro assays. Among the compounds, 3a and 3e exhibited a potent anti-proliferation activity on STAT3-depend human breast cancer cells with a good selectivity, significantly inhibited STAT3 protein level of MDA-MB-468 cells, and 3a displayed a strong binding activity on STAT3. The current results provided a new lead for further design and optimization of more potent and selective STAT3 inhibitors as a new class of anticancer drugs.

Experimental

General
1H- and 13C-NMR spectra were measured on a Bruker Advance II 300 spectrometer using tetramethylsilane as internal standard. Chemical shift (δ) are reported in parts per million (ppm) and coupling constants (J) are reported in hertz (Hz). 13C-NMR spectra were fully decoupled, and the following abbreviations are used: singlet (s), doublet (d), and multiplet (m).

MDA-MB-468 and MCF-7 cells were obtained from the Shanghai Cell Bank of the Chinese Academy of Sciences (Shanghai, China). STAT3 was purchased from PeproTech Inc., U.S.A. Human signal transducer and activator of transcription 3 (STAT3) Kit was from Rapidbio, RB.

<table>
<thead>
<tr>
<th>Compd.</th>
<th>Inhibition rate (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>1µM</td>
</tr>
<tr>
<td>3a</td>
<td>−8.42±1.53</td>
</tr>
<tr>
<td>3b</td>
<td>−10.50±0.84</td>
</tr>
<tr>
<td>3c</td>
<td>3.96±1.05</td>
</tr>
<tr>
<td>3d</td>
<td>5.41±0.47</td>
</tr>
<tr>
<td>3e</td>
<td>−18.61±3.23</td>
</tr>
<tr>
<td>3f</td>
<td>−9.25±0.76</td>
</tr>
<tr>
<td>3g</td>
<td>−15.38±0.53</td>
</tr>
<tr>
<td>3h</td>
<td>−10.81±0.67</td>
</tr>
<tr>
<td>3i</td>
<td>−15.70±0.17</td>
</tr>
<tr>
<td>3j</td>
<td>−16.74±0.25</td>
</tr>
<tr>
<td>3k</td>
<td>−14.14±0.69</td>
</tr>
<tr>
<td>3l</td>
<td>−10.08±0.70</td>
</tr>
<tr>
<td>4a</td>
<td>−9.77±0.50</td>
</tr>
<tr>
<td>4b</td>
<td>−7.17±0.40</td>
</tr>
<tr>
<td>4c</td>
<td>−9.98±0.57</td>
</tr>
<tr>
<td>4d</td>
<td>−6.86±0.40</td>
</tr>
<tr>
<td>4e</td>
<td>−2.60±0.53</td>
</tr>
<tr>
<td>4f</td>
<td>−12.37±0.93</td>
</tr>
<tr>
<td>4g</td>
<td>−10.19±0.46</td>
</tr>
</tbody>
</table>

Human breast cancer cell line MDA-MB-468 with constitutive activation of STAT3 was used for the assay. The inhibition rate cells of control group without any treatment was pegged as 0.00%, while other data were calculated relative to it. Data are expressed as mean±S.D., n=4. Significant differences compared with control group. *p<0.05; **p<0.01. "-" a minus sign of the data means enhancement effect on cell viability.

Fig. 3. Inhibitory Effects of the Selective Compounds on MDA-MB-468 and MCF-7

Human breast cancer cells MDA-MB-468 and MCF-7 were treated with 100µM selected compounds for 48h and assayed for viability using MTT method. Control group without any treatment was pegged as 0.00%, while other data were calculated relative to it. Each value represents the mean±S.D., n=3. Significant differences compared with control group. *p<0.05; **p<0.01.

Fig. 4. Effects of the Selective Compounds on STAT3 Protein Content in MDA-MB-468 Cells

Human breast cancer cells MDA-MB-468 were treated with 10µM and 100µM of selected compounds and the content of STAT3 was assayed with STAT3 ELISA kit. Each value represents the mean±S.D., n=3. Significant differences compared with control group (0.00%), the STAT3 concentration was 587.36 pg/mL, *p<0.05, **p<0.01.

Chemical Synthesis. General Procedure of Synthesis of N-Bis(methylthio)methylene Arylsulfonamide Type Compounds (2a–l)

To a solution of arylsulfonamide (1 mmol) in dried DMF (2 mL) was added NaOH (80 mg) and carbon disulfide (1 mmol) at 0°C over a few minutes. The reaction solution was stirred for 30 min at 0°C, and Me2SO4 (2 mmol) was added. The resulting crystalline precipitate was collected via filtration. The filter cake was washed with water, methanol and dried to afford the title compounds.

General Procedure of Synthesis of 2,2′-Bis(arylsulfonamino)-6,6′-bibenzoxazole (3a–l)

To a solution of 3,3′-dihydroxybenzidine (1 mmol) in dried DMF (8 mL) was added 5 µL NaOH solution (0.2 mL), and...
stirred at room temperature for 30 min. Then, solution of N-bis(methylthio)methylene arylsulfonamide (2, 2 mmol) in 2 mL DMF was added in dropwise, refluxed under N2 for 8 h. After cooling, acetic acid (2 mL) was added. The precipitate obtained after ample water was added, and then washed with water, and recrystallized using methanol to afford the target compounds.

Compound 3a (436 mg, 80%): 1H-NMR (300 MHz, DMSO-d6) δ: 7.94 (m, 4H), 7.87 (s, 1H), 7.60 (m, 8H), 7.37 (d, J = 7.0 Hz, 2H); 13C-NMR (75 MHz, DMSO-d6) δ: 156.52, 145.34, 142.63, 135.53, 132.79, 129.75, 129.45, 126.41, 124.37, 112.48, 109.10; positive electrospray ionization (ESI)-MS m/z 575 [M+H]+; high resolution (HR)-MS (ESI): Calcd for C28H23N4O6S2 [M+H]+ 575.1042, Found 575.1041.

Compound 3b (430 mg, 75%): 1H-NMR (300 MHz, DMSO-d6) δ: 8.13–7.97 (m, 2H), 7.84 (d, J = 12.1 Hz, 2H), 7.64–7.45 (m, 4H), 7.36 (m, J = 10.0, 6.0 Hz, 6H), 2.61 (s, 6H); 13C-NMR (75 MHz, DMSO-d6) δ: 156.45, 145.29, 140.77, 136.95, 135.52, 132.76, 132.61, 129.81, 127.65, 126.38, 124.36, 112.45, 109.06, 20.20; positive ESI-MS m/z 575 [M+H]+; HR-MS (ESI): Calcd for C26H17F2N4O6S2 [M+H]+ 583.0535, Found 583.0535.

Compound 3c (436 mg, 75%): 1H-NMR (300 MHz, DMSO-d6) δ: 7.88 (d, J = 1.1 Hz, 2H), 7.82–7.69 (m, 4H), 7.56–7.67 (m, 4H), 7.54–7.42 (m, 2H), 7.38 (d, J = 8.3 Hz, 2H); 13C-NMR (75 MHz, DMSO-d6) δ: 161.99 (d, J = 248.1 Hz), 156.85 (s), 145.54 (s), 144.79 (d, J = 6.6 Hz), 135.57 (s), 131.84 (d, J = 7.8 Hz), 130.02 (s), 124.39 (s), 122.75 (s), 119.83 (d, J = 21.1 Hz), 113.60 (d, J = 24.3 Hz), 112.61 (s), 109.11 (s); positive ESI-MS m/z 583 [M+H]+; HR-MS (ESI): Calcd for C28H23N4O6S2 [M+H]+ 583.0535, Found 583.0535.

Compound 3d (436 mg, 75%): 1H-NMR (300 MHz, DMSO-d6) δ: 12.49 (s, 2H), 8.07–7.94 (m, 3H), 7.91–7.79 (m, 3H), 7.61 (d, J = 8.4 Hz, 2H), 7.47–7.30 (m, 6H); 13C-NMR (75 MHz, DMSO-d6) δ: 164.44 (d, J = 243.9 Hz), 156.58 (s), 145.44 (s), 139.10 (s), 135.55 (s), 128.93 (s), 129.50 (d, J = 9.51 Hz), 126.94 (s), 125.58 (s), 124.39 (s), 116.54 (d, J = 22.5 Hz), 112.52 (s), 109.11 (s); positive ESI-MS m/z 583 [M+H]+; HR-MS (ESI): Calcd for C26H17F2N4O6S2 [M+H]+ 583.0535, Found 583.0541.

Compound 3e (442 mg, 72%): 1H-NMR (300 MHz, DMSO-d6) δ: 8.14 (m, 2H), 7.97–7.76 (m, 2H), 7.71–7.49 (m, 8H), 7.42 (d, J = 7.3 Hz, 2H); 13C-NMR (75 MHz, DMSO-d6) δ: 156.95, 145.24, 139.85, 135.75, 134.65, 134.25, 132.08, 131.29, 138.25, 127.94, 124.54, 114.71, 109.21; positive ESI-MS m/z 615 [M+H]+; HR-MS (ESI): Calcd for C28H23N4O6S2 [M+H]+ 614.9967, Found 614.9959.

Compound 3f (461 mg, 75%): 1H-NMR (300 MHz, DMSO-d6) δ: 11.72 (s, 2H), 8.00–7.80 (m, 6H), 7.70 (d, J = 8.8 Hz, 2H), 7.60 (m, 6H), 7.38 (d, J = 7.3 Hz, 2H); 13C-NMR (75 MHz, DMSO-d6) δ: 156.74, 145.47, 144.52, 135.62, 133.97, 132.72, 131.57, 129.78, 126.15, 125.20, 124.45, 112.99, 109.16; positive ESI-MS m/z 615 [M+H]+; HR-MS (ESI): Calcd for C28H17Cl2N4O6S2 [M+H]+ 614.9967, Found 614.9944.

Compound 3g (462 mg, 75%): 1H-NMR (300 MHz, DMSO-d6) δ: 7.94 (m, 4H), 7.88 (d, J = 1.1 Hz, 2H), 7.62 (m, 6H), 7.37 (d, J = 8.3 Hz, 2H); 13C-NMR (75 MHz, DMSO-d6) δ: 156.80, 145.51, 144.68, 135.59, 131.78, 129.93, 129.82, 125.55, 124.42, 122.26, 112.62, 109.13; positive ESI-MS m/z 616 [M+H]+; HR-MS (ESI): Calcd for C28H17Cl2N4O6S2 [M+H]+ 616.9967, Found 614.9961.

Compound 3h (461 mg, 75%): 1H-NMR (300 MHz, DMSO-d6) δ: 8.17 (dd, J = 7.7, 1.6 Hz, 2H), 7.92–7.78 (m, 4H), 7.70–7.48 (m, 6H), 7.41 (d, J = 8.3 Hz, 2H); 13C-NMR (75 MHz, DMSO-d6) δ: 157.01, 152.87, 145.28, 141.58, 135.69, 135.53, 134.19, 130.01, 128.42 (s), 124.51, 120.00, 117.20, 109.20; positive ESI-MS m/z 704 [M+H]+; HR-MS (ESI): Calcd for C28H17Cl2N4O6S2 [M+H]+ 704.0535, Found 704.0535.

Fig. 5. The Binding Processes of 3a on STAT3 (A, QCM-S) and Glutathione (B, QCM-G) Immobilized Chips

Compound 3k (258 mg, 75%): ¹H-NMR (300 MHz, DMSO-

Compound 3i (592 mg, 70%): ¹H-NMR (300 MHz, DMSO-

Compound 3j (492 mg, 70%): ¹H-NMR (300 MHz, DMSO-

Compound 3l (230 mg, 80%): ¹H-NMR (300 MHz, DMSO-

Compound 3m (241 mg, 82%): ¹H-NMR (300 MHz, DMSO-

Compound 3n (287 mg, 80%): ¹H-NMR (300 MHz, DMSO-

Compound 3o (257 mg, 80%): ¹H-NMR (300 MHz, DMSO-

Compound 3p (264 mg, 83%): ¹H-NMR (300 MHz, DMSO-

December 2012
glutathione solution.

Inhibitors-STAT3 binding assay: At the beginning, 10% DMSO Tris–HCl buffer (50 mM, pH 7.4) was flowed into STAT3 modified chip (QCM-S) via the HPLC injection value (flow rate, 40 μL/min). After a stable baseline was achieved, 200 μL of 3α or 3c solutions (dissolved in a 10% DMSO Tris–HCl buffer solution, and the final concentration was 0.5 mg/mL) were injected into the fluid system via the HPLC injection value. The curves of frequency versus time were recorded and the entire real-time association and dissociation processes were displayed continuously on the computer. The same experiment was conducted on the glutathione modified chip (QCM-G).

Statistical Analysis Data are presented as means±S.D. of the indicated number of experiments. Data were analyzed by one-way analysis of variance (ANOVA) followed by Dunnett’s test or Student’s t-test when appropriate. Probability values of 0.05 or less were considered to be statistically significant. All statistic analyses were performed with SPSS 13.0 (SPSS Inc., Chicago, IL, U.S.A.).

Acknowledgments This work was supported by the Natural Science Foundation of Jiangsu Province (BK2009240), the National Natural Science Foundation of Creative Research Groups of China (21121091) and the fund of Jiangsu Key Laboratory for Molecular and Medical Biotechnology (2011MMBKF02).

Supplementary Data Supplementary data (the docking results, 1H- and 13C-NMR spectra of selected synthesized compounds) associated with this article can be found in the online version.

References