was continued at a higher temperature for 3 hrs. The mixture was cooled to about 100° and poured into 50 cc. of water. To this was added with stirring dil. HCl. The thick, gelatinous, colorless solid that separated was digested for 1 hr., collected by filtration, washed with water, and dried. A crude yield of 93% was obtained. m.p. 84~85°. Mixed with the keto-acid (26), m.p. 84~85°, the depression was only 2°.

Summary

ω-Phenyl-fatty acids, ω-phenyl-caproic, ε-enanthic, ε-caprylic, ε-pelargonic, ε-capric, ε-undecanoic, ε-lauric, ε-tridecanoic, ε-myristic, ε-palmitic, ε-stearic, ε-arachidic, and ε-behenic acids, were prepared.

(Received August 20, 1954)

(Pharmaceutical Institute, Medical Faculty, University of Kyoto*)

Several years ago, Tomita, Fujita, and Murai reported that on the fission of isotetraneprine (I (--, +)) and tetranine (I (+, +)) with sodium in liquid ammonia, the former yielded as the bisected bases l-O, O, N-trimethylcoclaunine (II) and d-N-methylcoclaunine (III), and the latter, d-O, O, N-trimethylcoclaunine (II) and d-N-methylcoclaunine (III), respectively; and that d-N-methylcoclaunine (III) thus obtained formed from methanol colorless prisms, m.p. 139~139.5°, [α]D20°: +88.51° (CHCl3), which by analyses, were found to be a hemihydrate with an empirical formula C18H21O2N•½H2O.

Very recently, however, Kidd and Walker5) applied the same mode of fission process to phaeanthine (I (--, --)), an antipode of tetranine (I (+, +)), and O, O-dimethylcurine (IV), and reported that of the two bases (II) and (III) obtained, l-N-methylcoclaunine (III), a phenolic base, gave colorless prisms (from benzene or toluene), m.p. 176~177°, [α]D20°: -69.6° (CHCl3), corresponding to a composition of C18H21O2N.

It is well established that d-N-methylcoclaunine, when derived from the naturally occurring coclaunine by Tomita and Kusuda,9) as well as when synthesized by Kidd and Walker,9) has a definite m.p. of 161~162°. However, a doubt has arisen from the fact that of its optically active substances, the d-form shows m.p. 139~139.5°, whereas the l-form, m.p. 176~177°, and hence it has become necessary to reinvestigate the d-form (III).

On the other hand, just prior to the above British investigators, Bick and Clezy6) also carried out similar cleavage reactions of O, O-dimethylcurine, O, O-dimethylchondrocune, phaeanthine, and isotetraneprine, but they characterized the bisected bases as the methiodides or O-methyl ether methiodides without isolating them per se. As a result, no further records with reference to the m.p. of N-methylcoclaunine (III) of the bisected bases are available.

* Yoshida-Konoe-cho, Sakyo-ku, Kyoto (富田原町, 大川区, 京都府).
In view of the fact that the \(l \)-form (m.p. 176\(^\circ \text{C} \sim 177\(^\circ \text{C} \)) which crystallized from benzene or toluene, has a molecular formula \(C_{19}H_{20}O_N \), whereas the \(d \)-form (m.p. 139\(^\circ \text{C} \sim 139.5\(^\circ \text{C} \)) which crystallized from methanol, the molecular formula \(C_{19}H_{22}O_N \cdot 1/2H_2O \), the first assumption was that the \(d \)-form having the m.p. of 139\(^\circ \text{C} \sim 139.5\(^\circ \text{C} \) may hold a solvent of crystallization.

When the m.p. of a specimen\(^7\) of the \(d \)-form (III) obtained by the sodium-liquid ammonia fission of isotetrandrine was again measured, it began to sinter at 140\(^\circ \text{C} \) and finally melted at 176\(^\circ \text{C} \sim 177\(^\circ \text{C} \). Further recrystallization of this specimen from benzene gave floral aggregates of colorless needles melting at 176\(^\circ \text{C} \sim 177\(^\circ \text{C} \). Contrary to this, the m.p. of a specimen\(^8\) of the \(d \)-form (III) obtained by the same mode of cleavage of tetrandrine was again determined and showed m.p. 176\(^\circ \text{C} \sim 177\(^\circ \text{C} \). This phenomenon may be accounted for by the assumption that the substance forming a hemihydrate, m.p. 139\(^\circ \text{C} \sim 139.5\(^\circ \text{C} \), just after preparation, forms an anhydrate with elimination of water of crystallization after preservation for a long period of time. Measurement of the m.p. of specimen\(^9\) of the crude substance preserved show about 140\(^\circ \text{C} \), which after recrystallization from toluene,

7) This specimen had been preserved in this Laboratory since 1951 and recorded as m.p. 139\(^\circ \text{C} \sim 139.5\(^\circ \text{C} \).
8) This specimen also had been preserved since 1951 and recorded as m.p. 138\(^\circ \text{C} \sim 139.5\(^\circ \text{C} \).
9) Recorded m.p. 136\(^\circ \text{C} \sim 137\(^\circ \text{C} \).
rose to $176\sim 177^\circ$.

In order to clarify these situations, we have again taken up an investigation of isotetrandrine by the sodium-liquid ammonia process in the same way as in the previous paper\(^{10}\). When the crude phenolic base hereby obtained was recrystallized from benzene or toluene, it formed colorless prisms melting at $176\sim 177^\circ$. On the other hand, however, when it was recrystallized from methanol, in one case, crystals, m.p. $176\sim 177^\circ$, were directly obtained, instead of crystals of m.p. 139°, and in another case, prisms of m.p. $138\sim 140^\circ$ were obtained. These facts may be due to the conditions of recrystallization, depending upon the amount of water or moisture contained in the solvent methanol.

The crystals having m.p. $138\sim 140^\circ$ melted at $128\sim 140^\circ$ with some effervescence and on cooling solidified, after which on subsequent heating, they melted at $176\sim 177^\circ$, without sintering at 140° any longer. When the crystals, m.p. $138\sim 140^\circ$, were further recrystallized from anhydrous ethanol or benzene, they crystallized in colorless prisms melting at $176\sim 177^\circ$. Recrystallization of the crystals, m.p. $176\sim 177^\circ$, thus obtained, from methanol or hydrous methanol did not furnish a hemihydrate, m.p. 139°, but a product sintering at 140° and finally melting at $176\sim 177^\circ$. As a result of the mixed melting point determinations, these crystals showing m.p. $176\sim 177^\circ$ were found to be identical, and to possess analytical values corresponding to a composition $C_{18}H_{30}O_2N$, having no water of crystallization, $[\alpha]_D: +62.8^\circ$. Furthermore, the paper chromatography of the d-form, m.p. $176\sim 177^\circ$, and dl-form,\(^9\) m.p. $161\sim 162^\circ$, revealed that the two substances have the same Rf value of 0.73.10

The foregoing results are thus summarized as follows: d-N-Methylcoclaurine, when recrystallized from methanol, is obtained as a hemihydrate, m.p. $139\sim 140^\circ$, in some cases, which, after preservation for a long period of time, becomes an anhydride with elimination of the water of crystallization. On the other hand, however, when it is recrystallized from toluene or benzene instead, it is obtained as m.p. $176\sim 177^\circ$, quite identical with that recorded by Kidd and Walker for l-N-methylcoclaurine, m.p. $176\sim 177^\circ$.

The authors are indebted to Mr. M. Akasu of Kaken Chem. Drug Co. Ltd., for the generous gift of a sample of isotetrandrine. This work was supported by a Grant in Aid for Fundamental Scientific Research from the Ministry of Education, to which the authors' thanks are also due.

Experimental\(^{11}\)

Cleavage of Isotetrandrine by Metallic Sodium in Liquid Ammonia—(a) A solution of 2 g. of isotetrandrine in a mixture of 15 cc. of benzene and 15 cc. of toluene was added dropwise to about 300 cc. of liquid NH$_3$ placed in a 1-L. three-necked flask. The temperature was kept at -35°, and 1.5 g. of Na was then added in small portions with vigorous stirring until the blue color of the solution persisted for about half an hour, whereafter the mixture of an orange yellow color was kept overnight to permit evaporation of NH$_3$. The residue was treated with 100 cc. of water and the resulting solution was extracted with several portions of ether. The ethereal phase was washed with 2% NaOH solution and the alkaline washings were combined with the aqueous layer. The ether-benzene-toluene solution was exhaustively extracted with 5% HCl, and the extract made alkaline with 2% aq. NaOH. The non-phenolic base was re-extracted with ether, and the ethereal solution was dried over anhyd. K$_2$CO$_3$ and evaporated, yielding 0.86 g. of an orange red oil.

Meanwhile, the aqueous layer containing the phenolic fraction was neutralized with HCl, made alkaline with K$_2$CO$_3$ and extracted with ether. The ethereal phase was washed with 2% NaOH solution, to which the phenolic base was transferred. The resulting alkaline solution was made acid with HCl and, after being alkaliized with K$_2$CO$_3$ re-extracted with ether. The ethereal solution was dried over anhyd. K$_2$CO$_3$ and the ether removed, leaving the crude phenolic base as an orange oil. The oil was dissolved in a small amount of acetone and ether, and the solution allowed to stand.

\(^{10}\) As described in the experimental section, it was carried out according to the method of Kidd and Walker; they also recorded Rf value of 0.73 for the l-form and dl-form.

\(^{11}\) All melting points are uncorrected. The microanalyses were carried out in the Microanalytical Laboratory of this Institute by Mr. K. Hozumi and his staff.
whereupon 0.57 g. of slightly yellowish crystals of m.p. 168~173° deposited. Further recrystallization from benzene or toluene yielded floral aggregates of colorless needles, m.p. 176~177°; [α]D 4°: +62.8° (7.966 mg. Subst. in 1 cc CHCl₃, l=0.5 dm.). Anal. Calcd. for C₁₈H₂₁O₃N: C, 72.21; H, 7.10. Found: C, 72.26; H, 7.19.

(b) 2 g. of isotetrandrine dissolved in 20 cc. of toluene was cleaved by a procedure similar to that described in the previous paper and the products were separated as above. The yellowish oily phenolic fraction was dissolved in a small portion of MeOH, and by allowing the solution to stand, 0.6 g. of the crude white crystals were obtained. By recrystallization from MeOH they crystallized in colorless prisms. A sample, when heated, melted at 138~140° with frothing, and upon cooling solidified, after which, when again heated, it melted at 176~177° without melting at around 140° any longer. Crystallization from abs. EtOH or benzene, however, did not afford the product of m.p. 138~140°, but of m.p. 176~177°.

Paper Chromatography—The paper chromatography was carried out according to the method of Kidd and Walker. Toyos Roshi No. 50 paper was immersed in 0.2 M aq. KH₂PO₄, pressed between filter papers to remove excess of the liquid, dried at 100°, and allowed to equilibrate against atmospheric moisture for several hours before use. Development was effected by the descending method with the upper layer of a mixture of 63 cc. BuOH, 10 cc. AcOH, and 27 cc. of water. The Rf values for d-N-methylcoclaunine (m.p. 176~177°) obtained by the above fission, and for dl-N-methylcoclaunine (m.p. 161~163°) (ca. 60 γ used in each case) were both 0.73 using the Dragendorff reagent.

Summary

Evidence has been presented that d-N-methylcoclaunine (III) forms a hemihydrate having the m.p. of 139~139.5°, and its anhydride shows the m.p. 176~177°, quite identical with that recorded by Kidd and Walker for l-N-methylcoclaunine, m.p. 176~177°.

(Received August 20, 1954)

85. Masao Tomita and Yoshio Sasaki: Studies on the Alkaloids of Menispermaceous Plants. CXXII. Cleavage of Cepharanthine by Metallic Sodium in Liquid Ammonia. (3)²⁹

(Pharmaceutical Institute, Medical Faculty, University of Kyoto*)

In an earlier paper of this series, it was shown that as a result of the fission of cepharanthine (I) by the sodium-liquid ammonia process, a base possessing two phenolic hydroxyl and no methoxyl groups, corresponding to d-1-(4'-hydroxybenzyl)-6-hydroxy-N-methyl-1,2,3,4-tetraydroisoquinoline (II), was obtained in a crystalline form after chromatography, and on this basis formula (I) was proposed for cepharanthine. At that time, however, attempts to isolate the other phenolic fragment in crystalline form, corresponding to l-1-(4'-methoxybenzyl)-6-methoxy-7-hydroxy-N-methyl-1,2,3,4-tetrahydroisoquinoline (III), were unsuccessful. Although the l- and d-forms of (III) were obtained previously from O-methylxycanthine and O-methylpapedine, respectively, by the same mode of cleavage, at that time, they were characterized as the corresponding l- and d-O,O,N-trimethylcoclaunine (IV), respectively, because of the difficulty of crystallization.

In the present series of experiments, special attention was placed on the base (III) obtainable by the cleavage of cepharanthine, and this paper deals with the isolation of this particular base (III) from the resinous phenolic fraction left after the removal of the base (II). As described in the experimental section, a product forming a crystalline

* Yoshida-koen-cho, Sakyo-ku, kyoto (富田訪院, 佐々木秀男).