50. Eiji Ochiai und Ieji Kuniyoshi: Polarisation der heterozyklischen
 Ringe mit aromatischem Charakter. CXVI.1) Bemerkung
 zur Nitrierung des 1-Benzylisochinolins.

(Pharmaceut. Institut, Mediz. Fakultät, Universität Tokyo6)

Über die Nitrierung des 1-Benzylisochinolins wurde schon von Huntress und Shaw2) berichtet. Sie erhielten ein Mononitroderivat vom Schmp. 85~86°, indem sie das Nitrat des letzteren in konz. Schwefelsäure unter Eiskühlung lösten und eine kurze Zeit auf 50° erwärmten. Die Konstitution des letzteren wurde als 1-(4-Nitrobenzyl)-
isochinolin festgestellt, weil sein Methosulfat bei der Oxydation mit Kaliumpermanganat p-Nitrobenzoësäure gibt. Ferner sind sie durch Nitrierung mit Salpeter-Schwefelsäure bei Zimmertemperatur ein Dinitroderivat vom Schmp. 160~162°, welches sie ohne experimentellen Grund als 1-(2,4-Dinitrobenzyl)-isochinolin vermuteten. Denkt man jedoch an die Tatsache, dass Isochinolin bei analoger Nitrierung 5-Nitroderivat gibt,3) ist die obige Annahme fraglich.

So haben wir die Arbeit der beiden Autoren nachgeprüft. Das Mononitroderivat wurde mit einer Ausbeute von ca. 66% erhalten. Sein Schmelzpunkt (97~97.5°) lag etwas höher als die literarische Beschreibung, bildete es jedoch ein Methosulfat vom Schmelzpunkt (204~206°) und gab bei der Oxydation mit Kaliumpermanganat p-Nitrobenzoësäure und Phthalsäure. Das Dinitroderivat bildete schwachgelbe Nadeln vom Schmp. 168.5°. Seine Konstitution haben wir nun tatsächlich als 1-(4-Nitrobenzyl)-5-nitroisochinolin festgestellt.

Da wir von Anfang an die Konstitution des Dinitroderivates als das 4',5-Dinitroderivat annehmen, versuchten wir zuerst das letztere durch Kondensation von 5-Nitro-1-chlorisochinolin und p-Nitrobenzylcyanid mit Natriumamid und darauffolgender Verseifung mit konz. Schwefelsäure herzustellen. Der Versuch führte aber nicht zum Ziel, weil das p-Nitrobenzylcyanid dabei in das stabile aci-Nitrosalz überging und der Kondensation widersteht. So haben wir das Dinitroderivat in das entsprechende Diaminodervativ (Schmp. 199~202°) katalytisch reduziert und das letztere mit 1-(4-Aminobenzyl)-5-aminoisochinolin verglichen. Die beiden Präparate waren wirklich identisch. Das 1-(4-Aminobenzyl)-5-
aminoisochinolin haben wir neu nach den unten gezeigten Reaktionsstufen hergestellt.

5-Nitro-1-chlorisochinolin, welches Elpern und Hamilton4) durch Nitrierung von 1-Chlorisochinolin erhielten, haben wir nach Ochiai und Sai5) durch Behandeln von 5-Nitroisochinolin-N-oxyd mit Phosphoroxochlorid mit ca. 55%iger Ausbeute hergestellt. Das letztere wurde dann nach Elpern und Hamilton5) durch katalytische Reduktion
mit Raney-Nickel in 1-Chlor-5-aminoisochinolin (III) übergeführt. Die Kondensation des letzteren mit p-Aminobenzylcyanid (IV)5 erfolgte mittels Kaliumamid in flüssigem Ammoniak. Das amorphe bräunlich gefärbte Kondensat (Schmp. ca. 100$^\circ$-105$^\circ$ unter Schäumen) wurde ohne weitere Reinigung in 78%iger Schwefelsäure gelöst und durch Erhitzen auf ca. 170$^\circ$ in das erzielte 1-(4'-Aminobenzyl)-5-aminoisochinolin (VI) hydrolytisch übergeführt. (VI) stellte schwachgelbe Nadeln vom Schmp. 199$^\circ$-201$^\circ$ dar und bildete nadelförmiges Pikrat vom Schmp. 204$^\circ$-205$^\circ$ und Dicetyl derivat vom Schmp. 233$^\circ$-234$^\circ$. Sowohl die freie Base wie ihre Derivate zeigten keine Depression je bei einer Mischprobe mit dem aus dem Dinitrobenzylisochinolin (II) überführten Diaminodervat sowie ihrem entsprechenden Derivat.

Dieser Versuch wurde mit der Unterstützung des Unterrichtsministeriums zur Förderung der Chemie durchgeführt.

Experimental

Nitrierung des 1-Benzylisochinolins6-i) Mononitrierung: 2,2 g 1-Benzylisochinolin wurde in das Nitrat übergeführt und das letztere auf 10 ecn konz. H$_2$SO$_4$ unter Umrühren bei 0$^\circ$ zu 5$^\circ$ portionsweise zugesetzt. Nach 2.5 ständigem Stehenlassen bei Zimmertemperatur wurde die Reaktionsmischung 30 Minuten lang auf 35$^\circ$ erwärmt und auf Eis (ca. 500 ccmon) gegossen. Die Reaktionslösung wurde nach mit Pottasche alkalisch gemacht, mit Benzol extrahiert und der Benzol-Auszug aus wasserhaltigem EtoH umkristallisiert. Schmp. 97$^\circ$-97,5$^\circ$. Die Ausbeute: 1,75 g. C$_9$H$_7$O$_3$N$_2$-Ber.: C, 72,70; H, 4,58; N, 10,60. Gef.: C, 72,75; H, 4,50; N, 10,36.

Methosulfat: schwachgelbe Nadeln aus EtoH, Schmp. 204$^\circ$-206$^\circ$.

500 mg Probe gaben bei der Oxydation mit 5%iger KMnO$_4$-Lösung 150 mg p-Nitrobenzoesäure und 120 mg Phthalsäure.

ii) Dinitrierung: Zu einer Lösung von 0,95 g 1-Benzylisochinolin in 5 ccm konz. H$_2$SO$_4$ wurden 0,65 ccm konz. HNO$_3$ (d=1,421) bei 0$^\circ$ unter starkem Umrühren zugesetzt, die Reaktionsmischung 1 Stunde lang bei Zimmertemperatur stehengelassen und auf Eis gegossen. Die Reaktionslösung wurde mit Soda-alkalisch gemacht, der ausgeschiedene Niederschlag in Benzol aufgenommen.

Pikrat: Zers. Pkt. 203—204°.

Pikrat: Nadeln vom Schmp. 204—205°.
Acetylderivat: Nadeln vom Schmp. 233—234°.

Sowohl das Pikrat wie das Acetylderivat wurde mit dem entsprechenden Derivat des Diaminoderivates aus dem 1-Benzylisochinolin durch Mischprobe identifiziert.

Zusammenfassung

1-Benzylisochinolin bildet bei der Nitrierung 1-(4-Nitrobenzyl)-isochinolin bzw. 1-(4-Nitrobenzyl)-5-nitroisochinolin. 1-(4-Aminobenzyl)-isochinolin und 1-(4-Aminobenzyl)-5-aminoisochinolin sowie ihre Acetylderivate wurden neu hergestellt.

(Ausgegangen am 11. März 1957)

7) Da Huntress und Shaw die einzelne Beschreibung der Nitrierung ausliessen, geben wir hier eine kurze Beschreibung.