
On the other hand, a distillate from the steam distillation was extracted with Et2O (3~20 cc.) and CHCl3 (3~20 cc.), the combined organic layers were dried and evaporated in vacuo below 30° (bath temp.), giving a white solid, m.p. 42~42.5°, [α]D +12.0° (c=1.66, EtOH), 0.60 g. (63.8%), which was identical with l-menthol on mixed m.p. test and infrared spectrum comparison.

3-(3,4-Methylenedioxyphenyl)-D-alanine (D-V) — In the same way as that of (L-V), 1.0 g. (68.0%) of the HCl salt was obtained. Adjustment with 10% NH4OH to pH 5.8, gave 0.45 g. of (D-V) and from the filtrate an additional amount of 0.15 g. was obtained. Yield, 0.60 g. (48.0%). The crude (D-V) was purified from H2O to colorless needles, m.p. 239~240° (decomp.), [α]D +12.0° (c=1.66, N HCl). Anal. Calcd. for C10H11O4N: C, 57.41; H, 5.30; N, 6.70. Found: C, 57.42; H, 5.13; N, 6.52.

l-Menthol was recovered in 56.4% yield (0.53 g.) as white crystals of m.p. 39~42, [α]D +48.0° (c=4.62, EtOH).

The authors express their gratitudes to Dr. M. Suzuki of Tokyo Research Laboratory, Tanabe Seiyaku Co., Ltd. for his kind advices and measurements of optical rotatory dispersion curves. They are grateful to the members of the Central Analysis Room of this Faculty for microanalytical, infrared and ultraviolet spectral data.

Summary

Asymmetric hydrogenation of l-menthyl α-acetamido-3,4-methylenedioxyacinnamate was carried out by two methods: i) 10% palladium-carbon in ethanol, ii) 10% palladium-carbon in benzene. Hydrogenation products were separated by fractional crystallization, and were converted to optically active 3-(3,4-methylenedioxyphenyl)alanines by transesterification followed by acid hydrolysis.

(Received May 8, 1961)

UDC 547.466.02

(Faculty of Pharmaceutical Sciences, University of Tokyo*2)

In 1913 Torquati*3 isolated from the velvet bean (Vicia faba) 3-(3,4-dihydroxyphenyl)-l-alanine (l-Dopa), whose identification and absolute configuration were later established by Guggenheim,*3 and other investigators.*3 It is now known that Dopa plays an important role in mammalian metabolism of tyrosine*4 and also in the hypothetical biogenesis of some alkaloids.*5

*3 Part II: This Bulletin, 10, 688 (1962).
*2 Hongo, Tokyo (渋谷東京, 竹治長津).
1) T. Torquati: Arch. farm. sper., 15, 213, 308 (1913). (C.A., 7, 2774 (1913)).
Since the first synthesis of DL-Dopa in 1911\(^6\) many synthetic methods have been group reported.\(^7\) However, many of them are tedious and often give an impure product.

For the preparation of the optically active Dopa, the following four methods have been reported; namely, isolation from natural sources,\(^8\) introduction of a second OH L-tyrosine\(^3a\) or D-tyrosine,\(^3b\) resolution of the intermediate N-acyl derivative by brucine\(^9\) or cinchonine followed by hydrolysis of the N-acyl and O-methyl groups.\(^10\) The first two methods give only one optical isomer, whereas the last two furnish both D- and L-isomers.

In the preceding paper,\(^11\) the authors reported the preparation of 3-(3,4-methylene-dioxyphenyl)-D-, and -L-alanine (D- and L-(I)) and their N-acetylated derivatives (D- and L-(II)). The processes involved are synthesis of N-acetyl-3-(3,4-methylene dioxyphenyl)-DL-alanine (DL-II) by means of an acetamidomalonic synthesis, chemical or enzymatic resolution of the racemic N-acetyl derivative (DL-(II)) by cinchonine or Takadiastase, and hydrolysis of D- and L-(II). The preparation of N-acetyl-3-(3,4-methylene dioxyphenyl)-D-, and -L-alanine 1-menthyl ester (IIIa and IIIb) by an asymmetric reduction of 1-menthyl \(\alpha\)-acetamido-3,4-methylenedioxy cinnamate was also reported by the present authors.\(^12\) However, the experimental proofs for the absolute configurations of these compounds were not described in those papers.

Now the preparations of D- and L-Dopa from these compounds were attempted as shown in Chart 1, so that the absolute configurations of the starting materials might also be established.

![Chart 1](image_url)

As a preliminary experiment, it was attempted to hydrolyze the racemic compounds (DL-(I) and DL-(II)) with acids such as conc. HCl, HBr, and HI in a stream of nitrogen or carbon dioxide. In spite of every effort, however, it was difficult to obtain DL-Dopa in a pure state in all cases tried. On the other hand, when the condition used in the hydrolysis of N-methyl-3-(3-methoxy-4-hydroxyphenyl)alanine\(^{13}\) was applied, the hydrolysis proceeded very smoothly. The hydrochloride of DL-(I) was heated under reflux with red phosphorus and a mixture (1:1) of HI (d=1.7) and acetic anhydride to afford after the isolation procedure colorless prisms of DL-Dopa in a yield of 55%. Similar hydrolysis of the racemic N-acetyl derivative (DL-(II)) gave DL-Dopa in a yield of 55%. In the next place, the same condition as in the case of the racemate was applied to the optical isomers. Thus, 3-(3,4-methylenedioxyphenyl)-L-alanine (L-(I)), obtained by the asymmetric hydrolysis of DL-(II) with Takadiastase,\(^{11}\) gave L-Dopa in a yield of 80%. One recrystallization from water furnished an analytically pure sample (m.p. 276\(^\circ\)C\(\text{~}\)278\(^\circ\)C\(\text{~}\text{decomp.})\), \(\left[\alpha\right]_D^{13}=+13.1\) (N HCl)), which was shown to be identical with a sample of natural L-Dopa, isolated from Vicia faba L. by Nagasawa,\(^{14}\) by direct comparison of their physical properties (ultraviolet and infrared absorption spectra, Rf values, \(\left[\alpha\right]_D\) values, and color reactions). Now the absolute configuration of the starting amino acid (L-(I)) was simultaneously established. On being subjected to the same condition as above, the N-acetyl-D-amino acid (D-(II)), obtained by the asymmetric hydrolysis of DL-(II) with Takadiastase,\(^{11}\) gave D-Dopa, m.p. 276\(^\circ\)C\(\text{~}\)278\(^\circ\)C\(\text{~}\text{decomp.})\), \(\left[\alpha\right]_D^{11}=+13.0\) (N HCl), in a yield of 72%.

It is reported that DL-Dopa is more soluble in water than the optical isomer.\(^{10}\) For the preparation of D- and L-Dopa, therefore, it seemed unnecessary to start with an optically pure sample of D- and L-(II). Thus, when the crude N-acetyl amino acids (D- and L-(II)), derived from the corresponding crude cinchonine salts,\(^{11}\) were hydrolyzed under the same condition as above, D- and L-Dopa were obtained in 71% and 63% yield, respectively. The overall yields based on DL-(II) used were ca. 60% and ca. 50%, respectively.

The hydrolysis of the l-menthyl esters (IIa and IIb)\(^{12}\) was also effected by refluxing them for 4~5 hours with the same reagents as in the case of (II) to afford D- and L-Dopa, respectively, in each 42% yield.

Judging from their \(\left[\alpha\right]_D\) values the optically active samples obtained by the above methods seem to be practically pure, although a biological method of evaluation\(^{15}\) has not been applied to them. An attempt to detect the contamination of a sample of optically active Dopa with the racemate by measuring its infrared absorption spectrum, was of no use, because both authentic samples of L-Dopa and DL-Dopa gave superimposable infrared absorption spectra in KBr discs.

The methods mentioned above would serve as a new and advantageous way for the preparation of DL-, D-, and L-Dopa, when combined with the preparation of the intermediates (I), (II) and (III).\(^{11,12}\)

Experimental

3-(3,4-Dihydroxyphenyl)-DL-alanine (DL-Dopa) — i) From 3-(3,4-methylenedioxyphenyl)-DL-alanine (DL-(I)): The amino acid hydrochloride (DL-(I)·\(\frac{1}{2}\) HCl: 2.50 g.),\(^{11}\) red phosphorus (6.0 g.) and a mixture of HI (d=1.7; 15 cc.) and Ac₂O (15 cc.) were heated under reflux in a stream of CO₂ for 3 hr.

\(^{13}\) All m.p.s are uncorrected. The UV and IR absorption spectra were respectively measured with a Cary Model 11, and with a Koken Model DS-301 spectrophotometer equipped with NaCl optics. A "Zeiss Kreis polarimeter" was used for the measurement of optical rotation.

After cooling the remaining red phosphorus was filtered with suction and washed with 50% AcOH (20 cc.). The nearly colorless filtrate was combined with the washings, treated with a small amount of red phosphorus, and then evaporated in vacuo at 60–65°C in a stream of H₂, leaving a slightly yellowish syrup. The syrup was dissolved in H₂O (20 cc.) and then Et₂O, giving 550 mg. of Dl-Dopa, m.p. 270–272° (decomp.) with sintering at 250°. The combined solution of the filtrate and the washings was concentrated to ca. 10 cc. in vacuo at 50°C in a stream of H₂, and kept standing, in the same way as above, for 3 days. The colorless crystals separated were treated as above, giving an additional 660 mg. of Dl-Dopa. The IR absorption spectra of both crystals were identical. Total yield, 1.21 g. (55.2%). For purification 450 mg. of the product was dissolved in boiling H₂O (10 cc.), treated with a small amount of charcoal, and filtered. The resulting colorless solution was kept standing under a layer of hexane in a refrigerator for a day. The colorless prisms separated were collected, washed with H₂O, EtOH, and then Et₂O, giving 260 mg. of a pure sample, m.p. 270–272° (decomp.). For analysis it was dried at 70°C in vacuo (2 mm. Hg) over P₂O₅ for 5 hr. Anal. Calcd. for C₉H₁₁O₄N: N, 7.10. Found: N, 7.07. Rf 0.18.*⁴ IR ν_max cm⁻¹: 3450–3260 (OH), 3060, 2580 (NH₃⁻), 1660 (NH₃⁺), 276–278° (decomp.), ¹¹D +13.0° (c=5.273, NHCl, l=1).

The IR absorption spectrum of this sample in KBr disc was superimposable with that of an authentic sample of Dl- as well as L-Dopa. It reduced Tollens reagent immediately, and gave a slightly bluish green coloration with FeCl₃ in an aqueous solution. These properties agreed with those of Dl-Dopa.

ii) From N-acetyl-3-(3,4-methylenedioxyphenyl)-dl-alanine (dl-(I)): The N-acetyl derivative (dl- (II)): red phosphorus (6.0 g.) and a mixture of HI (d=1.7; 15 cc.) and Ac₂O (15 cc.) were allowed to react and worked up in the same manner as described in (i). Dl-Dopa was obtained as colorless prisms, m.p. 270° (decomp.) with sintering at 250°. Yield, 1.09 g. (55.3%). Recrystallization of the crystals (800 mg.) from H₂O (20 cc.) (SO₂-treated charcoal) gave 510 mg. of pure Dl-Dopa. Anal. Calcd. for C₉H₁₁O₄N: N, 7.10. Found: N, 6.77. Rf 0.18.*⁴ This sample agreed in all properties including the IR absorption spectrum with an authentic Dl-Dopa.

3-(3,4-Dihydroxyphenyl)-dl-alanine (D-Dopa) i) From N-acetyl-3-(3,4-methylenedioxyphenyl)-dl-alanine (dl- (I)): The N-acetyl-β-amino acid (dl- (I), [α]₂₀° +52.4°; 2.51 g.⁴¹) obtained by the asymmetric hydrolysis of dl- (I) with Takadiastase, was hydrolyzed in the same way as in the case of dl- (II) described above. D-Dopa was obtained as colorless needles, m.p. 275–276° (decomp.) with sintering at 255°, in a yield of 1.42 g. (72.1%). One gram of the crystals was recrystallized from H₂O (40 cc.) (SO₂-treated charcoal) to give 650 mg. of colorless needles (D-Dopa). It was dried at 70°C in vacuo (2 mm. Hg) over P₂O₅ for 5 hr.; m.p. 276–278° (decomp.), [α]₂₀° +13.0° (c=5.273, NHCl, l=1). Anal. Calcd. for C₉H₁₁O₄N: C, 54.82; H, 5.62; N, 7.10. Found: C, 54.64; H, 5.54; N, 6.89. Rf 0.18.*⁴ The IR absorption spectrum of this sample in KBr disc was superimposable with that of a sample of natural D-Dopa.

ii) From the crude N-acetyl-β-amino acid (ν- (II)): The crude N-acetyl-β-amino acid (ν- (II), [α]₂₀° -51.0° (c=2.072, EtOH, l=1) was obtained via the crude less soluble chinchonine salt by the resolution of ν- (II) in an over-all yield of 84.2% based on ν- (II) used. The procedure was given in the preceding report.¹¹ The crude N-acetyl-β-amino acid (ν- (II), 3.52 g.), red phosphorus (8.4 g.) and a mixture of HI (d=1.7; 22 cc.) and Ac₂O (22 cc.) were heated and worked up as in the case of ν- (I), when ν-Dopa was obtained as colorless needles, m.p. 275–276° (decomp.) with sintering at 255°. Yield, 1.96 g. (71%). 1.00 g. of the crystals was recrystallized from H₂O (40 cc.) (SO₂-treated charcoal) to afford 700 mg. of D-Dopa as colorless needles, m.p. 275–276° (decomp.) with sintering at 255°. Yield, 1.00 g. (71%). 1.00 g. of the crystals was recrystallized from H₂O (40 cc.) (SO₂-treated charcoal) to afford 700 mg. of D-Dopa as colorless needles, m.p. 275–276° (decomp.). It was dried at 70°C in vacuo (2 mm. Hg) over P₂O₅ for 5 hr.; m.p. 276–278° (decomp.), [α]₂₀° +13.0° (c=5.273, NHCl, l=1). Anal. Calcd. for C₉H₁₁O₄N: C, 54.82; H, 5.62; N, 7.10. Found: C, 54.64; H, 5.54; N, 6.89. Rf 0.18.*⁴ The IR absorption spectrum of this sample in KBr disc was superimposable with that of a sample of natural D-Dopa.

iii) From the l-menthyl ester (IIIa): The l-menthyl ester (IIIa, m.p. 85–87°C, [α]₂₀° -55.2° (c=1.50, benzene, l=1): 3.80 g.⁴¹) red phosphorus (6.0 g.) and a mixture of HI (d=1.7; 15 cc.) and Ac₂O (15 cc.) were heated under reflux for 5 hr. in the same manner as in (i) and worked up also in the same way as in (i) to furnish 830 mg. (42.1%) of colorless needles, m.p. 266–267° (decomp.). One part of it was recrystallized from 40 parts of H₂O containing a few drops of aqueous SO₂ (charcoal), giving ν-
Dopa as colorless needles, m.p. 278 (decomp.), (α)D +13.3 (c=1.53, NHCl, l=1). Anal. Calcd. for C9H11O4N: C, 54.82; H, 5.62; N, 7.10. Found: C, 54.61; H, 5.69; N, 6.94. Ref 0.18.*4 The IR spectrum of this sample in KBr disc was superimposable with that of a sample of natural L-Dopa.

3-(3,4-Dihydroxyphenyl)-L-alanine (L-Dopa) —— i) From 3-(3,4-methylenedioxyphenyl)-L-alanine (L-(1)): 3-(3,4-methylenedioxyphenyl)-L-alanine (L-(1), (α)D -13.6 (NHCl); 1.00 g.)11) derived from the asymmetric hydrolysis of DL-(1) with Takadiastase, red phosphorus (3.0 g.) and a mixture of HI (d=1.7; 7.5 cc.) and Ac2O (7.5 cc.) were heated and worked up as in the case of DL-(1), when 730 mg. (77.5%) of colorless needles (L-Dopa), m.p. 275–276 (decomp.) with sintering at 255°, were obtained. The needles (500 mg.) were recrystallized from H2O (20 cc.) (SO2-treated charcoal) to give L-Dopa as colorless needles (350 mg.), m.p. 276–278 (decomp.), (α)D -13.1 (c=5.122, N HCl, l=1). Anal. Calcd. for C9H11O4N: C, 54.82; H, 5.62; N, 7.10. Found: C, 54.90; H, 5.61; N, 7.24. Rf 0.18.*4 UV λmax (0.001 NHCl) λ (log ε): 220.5 (3.79), 280 (3.42); UV λmin (0.001 NHCl) λ (log ε): 217 (3.78), 250 (2.33). IR νmax (cm⁻¹): 3450–3260 (OH), 3060, 2580 (NH3+), 1660 (NH3+), 1573 (COO-).

The UV and IR absorption spectra of this sample were respectively superimposable with those of a sample (m.p. 276–278 (decomp.), (α)D -13.2 (c=4.184, N HCl, l=1), Rf 0.18*4) of natural L-Dopa isolated from Vicia faba L. by Nagasawa.14)

ii) From the crude N-acetyl-L-amino acid (L-(II)): The crude N-acetyl-L-amino acid (L-(II), (α)D +46.5 (c=2.347, EtOH, l=1)) was obtained via the crude easily soluble cinchonine salt by the resolution of DL-(II), according to the procedure reported previously,11) in an over-all yield of 76.2% based on DL-(II) used. When 3.52 g. of the crude acid (L-(II)) was treated in the same manner as in the case of the crude D-isomer, L-Dopa was obtained as colorless, m.p. 275–276 (decomp.) with sintering at 255°. Yield, 1.74 g. (68%). Recrystallization of the crystals (1.00 g.) from H2O (40 cc.) (SO2-treated charcoal) gave 620 mg. of colorless needles, m.p. 276–278 (decomp.), (α)D -12.3 (c=5.097, N HCl, l=1). Anal. Calcd. for C9H11O4N: C, 54.82; H, 5.62; N, 7.10. Found: C, 54.97; H, 5.32; N, 7.08. Rf 0.18.*4 The IR absorption spectrum of this sample in KBr disc was superimposable with that of a sample of natural L-Dopa.

iii) From the l-menthyl ester (IIIb): The l-menthyl ester (IIIb, m.p. 150–151°, (α)D -3.8 (c=1.52, benzene, l=1); 3.90 g.),12) red phosphorus (6.0 g.) and a mixture of HI (d=1.7; 15 cc.) and Ac2O (15 cc.) were heated under reflux for 4 hr. and worked up in the same manner as in (i), when 830 mg. (42.1%) of colorless needles, m.p. 276–278 (decomp.), (α)D -13.1 (c=1.53, N HCl, l=1). Anal. Calcd. for C9H11O4N: C, 54.82; H, 5.62; N, 7.10. Found: C, 54.69; H, 5.44; N, 6.82. Ref 0.18.*4 This sample was also identified by comparison of the IR spectrum with a sample of natural L-Dopa.

The samples of D- and L-Dopa, which were obtained by the method described above, gave the same color reactions with FeCl3, Tollens reagent and ninhydrin as natural D- and L-Dopa.

The authors are grateful to Dr. T. Nagasawa of National Institute of Agricultural Sciences for a donation of natural L-Dopa. Thanks are also due to the members of the Central Analysis Room of this Faculty for elemental analyses and spectral data. This study was partly supported by the Grant-in-Aid for Scientific Research provided by the Ministry of Education, which is gratefully acknowledged.

Summary

Hydrolyses of the racemate and the optical isomers of 3,4-methylenedioxyphenylalanine (I), and of their N-acetyl derivatives (DL-, D-, and L-(II)) including the l-menthyl esters (IIIa and IIIb) were smoothly effected by using a mixture of HI, Ac2O and red phosphorus to furnish the corresponding racemate and optical isomers of 3-(3,4-dihydroxyphenyl)alanine (Dopa) in fair yields.

This method would be a new and advantageous way for the preparation of DL-, D-, and L-Dopa, when combined with the previously reported preparation11,12) of the racemic and optically active intermediates. The absolute configurations of the optical isomers of (I), of their N-acetyl derivatives (D- and L-(II)), and of the l-menthyl esters (IIIa and IIIb) were simultaneously established by the above hydrolyses.

(Received May 8, 1961)