of sciadial, but also afforded the key step to convert sciadial to the above-mentioned atisine-type diterpene alkaloids (or their mirror images). The work along this line is now in progress.

The authors express their gratitude to Dr. Y. Kawazoe, National Cancer Center, Research Institute, Tokyo, for the interpretation and measurements of NMR spectra.

Institute of Dental Materials,
Tokyo Medicó-Dental University,
Yushima, Bunkyo-ku, Toyko.

Chikara Kaneko (金子昌徹)
Takashi Tsuchiya (土屋 喜)
Masayuki Ishikawa (石川正幸)

Received July 3, 1963
Revised July 25, 1963

Syntheses of (+)-Isoalpinine and (−)-13-Alkylsubstituted Sophoramine from (+)-Matrine

Recently Sadykov showed that (+)-isosorphone, isolated from Sophora pachycarpa, is (+)-11,13-didehydrobeta-lactone (I). We previously reported the syntheses of (−)-sophocarpine (V) and (−)-sophoramine (VI) from (+)-matrine (II) as shown below.

![Chart 1.](image)

This paper deals with the syntheses of (+)-isosorphone (I) directly from dichloromatsine (III) or via (−)-sophoramine (VI) and also of (−)-13-alkylsubstituted sophoramines (Xa and Xb) from (−)-sophocarpine (V).

When III was heated in pyridine at 250°C overnight, an aminic base was obtained in 58% yield: its analytical data (Calcd. for C_{18}H_{20}O_{2}: C, 73.73; H, 8.25; N, 11.47. Found: C, 73.50; H, 8.22; N, 11.14) and physical constants—m.p. 149° (ether—petroleum ether), [α]_D^25 +53.3° (c=1.005, EtOH), UV λ_{max} μ (log ε): 309 (3.88), 233.5 (3.78), IR ν_{max} cm^{-1}: 2830, 2770 (trans-quinoxaline), 1655, 1575, 1550 (α-pyridone)—are in quite good agreement with those of (+)-isosorphone (I). Furthermore the catalytic hydrogenation of this base offered (−)-allomatrine (VII) in a quantitative yield. Consequently, I was synthesized from III in one step, involving aromatization of ring D and inversion at the C_{12}-position. Although the isomerization from VI to I did not occur by heating.

in pyridine at 250°, this isomerization smoothly proceeded under the similar conditions using pyridine-hydrogen chloride. Therefore this reaction seems to involve a new type of fragmentation mechanism** and the equilibrium between I and VI should lie far to the right since I is energetically much more stable.

![Chart 2.](image)

When V was refluxed in 10% alcoholic potassium hydroxide, an aromatic base** was obtained in 13% yield: m.p. 178° (ether-petroleum ether), [α]_D^20 = -76.5° (c=0.96, EtOH), UV λ_{max} m_{μ} (log ε) = 309 (3.97), 239.5 (3.77), IR ν_{max} cm⁻¹: 2840, 2790 (trans-quinolizidine), 1642, 1595, 1552 cm⁻¹ (α-pyridone), NMR: 2.88 τ (1 proton: doublet: J=7.2), 3.87 (1 proton: H H doublet: J=7.2) : -\text{C} - \text{C} = \text{C} - \text{C}-. 8.87 (3 protons: triplet: J=7.5) : CH₃CH₂-aromatic ring, Anal. Calcd. for C₁₄H₂₂ON₂: C, 74.96; H, 8.88; N, 10.29. Found: C, 75.28; H, 8.89; N, 10.28. Its empirical formula and spectral data clearly showed that this compound is 11- or 13-ethylsophoramine. In this case this base has most probably resulted from the aldol condensation of α,β-unsaturated lactam moiety of V and acetaldehyde from the air oxidation of alcohol, followed by dehydration and aromatization by migration of the double bond, as shown below. When V was refluxed in \(t \)-butanol with meta-acetaldehyde and potassium \(t \)-butoxide, the same compound was obtained in a reasonable yield as expected. Therefore the compound in question is most probably 13-ethylsophoramine (Xa).

![Chart 3.](image)

In order to determine whether this type reaction is general, V was heated in 10% butanolic potassium hydroxide. In this case 13-butylsophoramine (Xb) was also obtained in 28% yield: m.p. 138° (ether-petroleum ether), [α]_D^20 = -68.6° (c=0.44, EtOH), UV λ_{max} m_{μ} (log ε) = 312 (4.00), 239.5 (3.76), IR ν_{max} cm⁻¹: 2840, 2795 (trans-quinolizidine), 1645.

** This new fragmentation reaction is now under investigation using the other compounds such as (-)-anagyrine.

** This was first isolated from the nonsaponifiable base of the alkaloidal mixture of *Sophora flavescens*; Y. Kashida, et al., Kanto local meeting of Pharm. Soc. Japan, Nov., 1957.

** To avoid the formation of an aldehyde by air oxidation, \(t \)-butanol was employed.

1597, 1555 (α-pyridone). *Anal. Calculated for C₁₅H₁₇NO₃: C, 75.95; H, 9.33; N, 9.33. Found: C, 75.58; H, 9.32; N, 9.42. For the purpose of evaluating the utility of this reaction, the precise mechanism is now under investigation using model compounds.*

The authors are indebted to Dr. Y. Kawazoe, National Cancer Center, for NMR spectral measurements.

The Institute of Applied Microbiology,
The University of Tokyo,
Bunkyo-ku, Tokyo.

Shigenobu Okuda (奥田章信)
Hiromitsu Kamata (鎌田裕光)
Kyosuke Tsuda (津田恭介)

Received July 20, 1963