CHEMICAL & PHARMACEUTICAL BULLETIN

Vol. 11 No. 7 July 1963

143. Yasuhiko Sato, Shiro Nishioka, Osamu Yonemitsu, and Yoshio Ban:
The Absolute Configuration of Sarkomycin.*

(Faculty of Pharmaceutical Sciences, School of Medicine, Hokkaido University**)

Sarkomycin, an antibiotic with inhibitory effect on the Ehrlich ascites tumor in mice, was first isolated and named by Umezawa, et al., in 1953, who discovered that this antibiotic is produced by Streptomyces erythrochromogenes (Strain No. W-115-C), which was obtained from soil found at Kamakura, Japan. In 1955, Hooper, et al. reported that the effective component of sarkomycin is 2-methylene-3-oxocyclopentanecarboxylic acid (II), containing only one asymmetric carbon. On the other hand, it was shown by Tatsuo, et al. that the natural sarkomycin is in the levo-form ([α]D -32.5° (c=1, MeOH)). The synthesis of rac-sarkomycin was first achieved by Toki, who obtained the ultimate product by a four step process starting from 3-oxocyclopentanecarboxylic acid (I). Thereafter, Shemyakin also succeeded in the synthesis of rac-sarkomycin, and either of these syntheses confirms that the effective ingredient of sarkomycin should be represented by the plane formula (II). Moreover, Toki applied his synthetic method of rac-sarkomycin (II) to the optical active series, thus obtaining (-)-sarkomycin ([α]B -28.9° (ethyl acetate)) from (-)-3-oxocyclopentanecarboxylic acid ([α]B -22.2° (MeOH)). Accordingly, the absolute configuration of the natural sarkomycin should be elucidated if that of one of the two optical isomers of 3-oxocyclopentanecarboxylic acid (I) is established.

In the present paper, we wish to report that (+)-3-oxocyclopentanecarboxylic acid ((+)-isomer of I) was chemically correlated with (+)-3-carboxyadipic acid (VI) and also with (+)-3-methylcyclopentanone (XIII); both of the latter are of known absolute configurations.6,9

* A preliminary communication of this paper has appeared in Chem. & Ind. (London), 1963, 490.
** Kita-12-jo, Nishi-5-chome, Sapporo, Hokkaido (佐藤泰彦, 西岡勇, 末光, 伴, 羽雄).
Chart 1.

Chart 2.
As is shown in the correlation map of Chart 2, (+)-3-carboxyadipic acid (VI) is derived from 3-carboxy-5-methoxyadipic acid (VIII), which is correlated with (−)-shikimic acid (XI) via XII, XIV, XV, XVI, and XVII. The stereochemistry of (−)-dihydroshikimic acid (XII) is confirmed by formation of the lactone (XIII) and (−)-shikimic acid (XI) is further correlated with (+)-glucose (IX) via X. Thus, (+)-3-carboxyadipic acid is represented by the formula (VI) in terms of absolute configuration. In order to correlate (+)-3-oxocyclopentanecarboxylic acid (II) with one of the two optical isomers (VI and its mirror image form) of 3-carboxyadipic acid, diethyl malonate (III) was reacted with ethyl bromoacetate to afford diethyl ethoxycarboxylsuccinate (IV), according to the Kay’s method, which was further condensed with ethyl 3-bromopropionate to give diethyl 3,3-bis(ethoxycarbonyl)adipate (V). This tetraester was hydrolyzed and decarboxylated with concentrated hydrochloric acid to afford 3-carboxyadipic acid (rac-VI), which was optically resolved with (−)-ephedrin by the Freudenberg’s procedure. (−)-Ephedrine-(+)-3-carboxyadipic acid salt was recrystallized many times from acetone and was liberated to give (+)-3-carboxyadipic acid (VI), m.p. 101~103°, [α]D 15.3° (c=3.0, MeCO) recrystallized from ethyl acetate. This acid was esterified to afford the corresponding ester (VII), b.p. 180°, [α]D 11.1° (c=3.0, MeOH) which was subjected to the Dieckmann condensation, followed by hydrolysis and decarboxylation to yield a preponderance of (−)-3-oxocyclopentanecarboxylic acid, m.p. 60~62° (b.p. 138~141°), [α]D 1.34° (c=15, MeOH). Although the magnitude of rotation of this acid is extremely low compared with that of the optically pure compound, [α]D +22.1° (c=1.9, MeOH), this correlation essentially suggested that the configuration of (−)-3-oxocyclopentanecarboxylic acid is represented by the formula (−)-1, C-1 is R, which is the same as that of (+)-3-carboxyadipic acid (VI) of known absolute stereochemistry. For confirmation of this result, rac-3-oxocyclopentanecarboxylic acid was synthesized and optically resolved with brucine by the Toki’s procedure, thus obtaining (−)-3-oxocyclopentanecarboxylic acid (−)-1, m.p. 65~67°, [α]D +22.0° (c=1.5, MeOH), which was derived to ethyl ester (VIII), b.p. 90~91°, [α]D +20.8° (c=2.5, MeOH), IR νmax cm−1: 1740 (five membered ring ketone), 1725 (ester).

![Chart 3.](image)

On treating the ester with ethylene glycol in the usual manner, there was obtained the corresponding ketal-ester (XIX), b.p. 125~129°, [α]D −16.2° (c=2, MeOH), in 81.5% yield, which was confirmed by disappearance of IR band at 1740 cm−1. This ketal-ester (XIX) was subjected to the reduction with lithium aluminum hydride to yield the corresponding alcohol (XX), b.p. 122~125°, [α]D −4.69° (c=5.15, pyridine) in 93.6% yield, the
structure of which was also supported by disappearance of ester band at 1725 cm\(^{-1}\). This alcohol was tosylated to XXI, followed by treatment with thiourea to give the thiouronium salt (XXII), which in turn, was reduced with rather inactive Raney nickel and then hydrolyzed with 10\% HCl to afford (+)-3-methylcyclopentanone (XXIII), b.p. 138\textendash
140\(^{\circ}\), \([\alpha]_D^{19} + 25.20^\circ\) (c=5, CHCl\(_3\)) which gives 2,4-dinitrophenylhydrazone, m.p. 122\(^{\circ}\), of the satisfactory analytical data. The magnitude of the rotation indicates that the partial racemization occurred during the above reaction sequence, as compared with \([\alpha]_D^{19} + 154.8^\circ\) (CHCl\(_3\)) of the optically pure material (XXIII).\(^{10}\) But, optical rotatory dispersion curves of these compounds in Fig. 1, clearly indicate that the optically active component of the present conversion product is (+)-3-methylcyclopentanone.\(^{10}\) Consequently, this result is enough to conclude that the configuration of the carbon atom carrying carboxyl group of (+)-3-oxocyclopentanecarboxylic acid ((+)-I) is the same as that of (+)-3-methylcyclopentanone (XXIII).

![Chart 4](image)

![Fig. 1](image)

The configuration of (+)-3-methylcyclopentanone has already been established as R by Eisenbraun and McElvain, who correlated this compound with (−)-2-methylglutaric acid (XXVIII) via (+)-pulegone (XXV), XXVI and XXVII as are shown in Chart 4; the configuration of XXVII had been established by Fredga by his method of quasi-racemates, compared with (−)-lactic acid (XXIX). Furthermore, they converted (+)-3-methylcyclopentanone (XXIII) to (+)-2-methylsuccinic acid (XXIX) via XXIV, which is also in accord with Fredga’s conclusion. Thus, the above correlation of (+)-3-oxocyclopentancarboxylic acid with (+)-3-methylcyclopentanone (XXIII) establishes the configuration of the former acid as R being represented by (+)-I.

According to the present correlation, (+)-3-oxocyclopentancarboxylic acid has been established to be the mirror image form of (+)-I, and since it was derived from (−)-2-methylene-3-oxocyclopentancarboxylic acid by the Toki’s synthesis, the absolute configuration of the natural (−)-sarkomycin is represented by XXXIII, of which the asymmetric carbon (C-1) is designated as the S-configuration.

Experimental

Diethyl (+)-3-Ethoxycarbonyldipitate (VII)—The synthetic method of the rac-product was followed. To a solution of 6.3 g. of (+)-3-carboxylic acid (VI) (m.p. 101°, [α]D20 +15.3° (c=3.0, Me2CO), lit. 40 m.p. 106°, [α]D20 +16.39°) in 32 ml. of absolute ethanol was added 3.2 g. of conc. H2SO4 and the resulting solution was refluxed in an oil-bath kept at 110° for 20 hr. After cooling, the reaction mixture was basified with saturated Na2CO3 solution, extracted with Et2O, and the dried over anhyd. Na2SO4. Evaporation of the Et2O and distillation of the residue gave 6.085 g. (Yield. 60.0%) of the corresponding ester, colorless liquid, b.Pn 180°, [α]D20 +11.1°(c=3, MeOH). Anal. Calcd. for C12H12O4: C, 56.91; H, 8.08. Found : C, 56.66; H, 8.13.

(+)-3-Oxocyclopentancarboxylic Acid (+)-I—The method was followed according to the Kay’s procedure for the rac-product. To a suspension of 1.02 g. of Na dust in 50 ml. of absolute toluene, was added 6.085 g. of the foregoing diethyl (+)-3-ethoxycarbonyldipitate, and the whole mixture was warmed at 80°-90° for 2 hr. The reaction mixture was cooled by ice, acidified with 10% HCl and extracted with Et2O. The Et2O was removed to give a crude oil, to which without further purification, was added 70 ml. of 8% H2SO4. The mixture was heated in an oil bath kept at 110° for 3 hr. to effect the decarboxylation. After the completion of evolution of carbon dioxide, the mixture was concentrated, saturated with (NH4)2SO4, and extracted thoroughly with Et2O ten times. The Et2O extract was dried over anhyd. Na2SO4, the Et2O was removed and the residual oil was distilled to yield 1.386 g. (53.5%) of (+)-3-oxocyclopentancarboxylic acid, white crystals, m.p. 60°-62° (from benzene), b.Pn 138°-141°, [α]D18 +1.34°(c=15, MeOH). Anal. Calcd. for C5H8O3 : C, 56.24; H, 6.22. Found : C, 56.15; H, 6.19.

Optical Resolution of 3-Oxocyclopentancarboxylic Acid—Optical resolution of 3-oxocyclopentancarboxylic acid by brucine was carried out according to the Toki’s procedure to give (+)-acid, m.p. 65°-67°, recrystallized from benzene, b.Pn 138°-141°, [α]D18 +22.0° (c=1.5, MeOH). Anal. Calcd. for C4H8O3 : C, 56.24; H, 6.22. Found : C, 56.51; H, 6.52.

Ethyl 3-Oxocyclopentancarboxylate—Esterification of the foregoing (+)-acid was also carried out by the Toki’s procedure to give ethyl (+)-3-oxocyclopentancarboxylate, b.Pn 90°-91° (α)D18 +23.8° (c =2.5, MeOH), (lit. m.p. 116°-118°, [α]D20 +20.9°(MeOH)). Anal. Calcd. for C6H10O3 : C, 61.52; H, 7.72. Found : C, 61.45; H, 7.79. 2,4-Dinitrophenylhydrazone: Yellow needles, m.p. 149°-150° (Toki reported m.p. 172°-173°). Anal. Calcd. for C14H10O4N4 : C, 49.99; H, 4.79; N, 16.67. Found : C, 49.62; H, 5.14; N, 16.61.

Ethyl (-)-3-Oxocyclopentancarboxylate Cyclic Ethylene Acetal (XIX)—A solution of 4.136 g. (0.0265 mol.) of ethyl (+)-3-oxocyclopentancarboxylate, 1.92 g. (0.031 mol.) of ethylene glycol, 20 mg. of p-toluensulfonic acid in 40 ml. of absolute benzene was heated under reflux in an oil bath kept at 110°-120° for 7 hr. The mixture was concentrated to about a half volume, and Et2O was added. The solution was washed with saturated NaHCO3 solution and then with saturated NaCl solution. After drying over anhyd. Na2SO4, the solvent was removed to give a residual oil, which was distilled to yield 4.321 g. (81.5%) of colorless transparent oil, b.Pn 125°-129°, [α]D20 -16.2°(c=2, MeOH). Anal. Calcd. for C9H14O3 : C, 59.98; H, 8.05. Found : C, 59.56; H, 8.09.

*3 All melting points are not corrected.
(−)-3-Hydroxymethylcyclopentanone Cyclic Ethylene Acetal (XX)—To a solution of 880 mg. of LiAlH₄ in 50 ml. of absolute Et₂O was added a solution of 3.046 g. of ethyl 3-oxocyclopentanecarboxylate cyclic ethylene acetal (XIX) in 20 ml. of Et₂O over a period of 30 min. under stirring and ice-cooling. After the addition, the reaction mixture was refluxed for 3.5 hr., cooled to room temperature and the excess of LiAlH₄ was decomposed with H₂O. The inorganic substance was filtered off, and the Et₂O solution was dried over anhyd. Na₂SO₄. Evaporation of the Et₂O and the distillation of the residue gave colorless transparent oil, b.p. 122~125°, 2.226 g. (93.6%), [α]₀²⁰ + 4.69° (c = 5.15, pyridine). Anal. Calcd. for C₈H₁₀O₂: C, 60.74; H, 8.92. Found: C, 61.04; H, 8.96.

(+)-3-Methylcyclopentanone (XXIII)—To a solution of 2.103 g. (0.0133 mol.) of 3-hydroxymethylcyclopentanone cyclic ethylene acetal in 5 ml. of pyridine was added 3.049 g. of p-toluenesulfonyl chloride in 15 ml. of pyridine under ice-cooling. The whole solution was allowed to stand at room temperature for 2 days, to which was added under ice-cooling saturated sodium bicarbonate solution. The mixture was allowed to stand at room temperature for 4 hr., with occasional shaking. After extracting with CHCl₃, the extract was dried over anhyd. Na₂SO₄, the solvent was removed in vacuo at room temperature to leave 4.160 g. of the residual oil (XXI) which without further purification was subjected to the following reaction.

To a solution of 1.110 g. (0.0146 mol.) of thiourea in 40 ml. of ethanol was added 4.160 g. of the foregoing tosylate (XXI) in 20 ml. of ethanol, which was refluxed with stirring in an oil bath maintained at 100° for 4.5 hr. The EtOH was removed in vacuo to leave 5.296 g. of the viscous oil, which was subjected to the following reduction.

In an autoclave fitted with magnetic stirrer, was placed 2.510 g. of the foregoing thionironium tosylate (XXIII), 30 g. of Raney-Ni(W-2) and 50 ml. of MeOH, which mixture was heated to 100~110° with stirring for 8 hr. After standing overnight, the autoclave was opened and Raney-Ni was filtered off. The filtrate was concentrated to leave the residual oil, to which was added 3 ml. of 10% HCl. The mixture was warmed in a water-bath for 30 min., and after cooling, was extracted with Et₂O. The Et₂O extract was washed with saturated NaHCO₃ solution, followed by water, and with concentrated CaCl₂ solution five times. After the extract was dried over anhyd. Na₂SO₄ for 2 days, the Et₂O was removed to leave the oil, which was distilled to give 132 mg. (20.8%) of colorless oil, b. p. 138~140°, [α]₀²⁰ +25.20° (c = 5, CHCl₃). The oil contained neither N nor S. 2,4-Dinitrophenylhydrazone: Orange yellow needles, m. p. 122°. Anal. Calcd. for C₁₃H₁₁O₂N₂: C, 51.79; H, 5.07; N, 20.13. Found: C, 51.76; H, 5.08; N, 20.08. The optical rotatory dispersion curve of this ketone (XXIII) is shown in Fig. 1.

The authors express their gratitude to Mr. K. Narita, Mrs. T. Toma and Miss A. Maeda for elemental analyses. Thanks are also due to the Ministry of Education for Grant-in-Aid for Fundamental Scientific Research (Co-operate Research, Representative : Professor T. Miyaki) of 1961~1962.

Summary

(+)-3-Oxocyclopentanecarboxylic acid was chemically correlated with (+)-3-carboxy-adipic acid and with (+)-3-methylcyclopentanone, both of which are of known absolute configurations. This correlation established that the natural sarkomycin, (−)-2-methylene-3-oxocyclopentanecarboxylic acid, is represented by the formula (XXII), of which C-1 is S.

(Received December 24, 1962)