227. Eisaku Morishita and Shoji Shibata*1: Metabolic Products of Fungi. XXVII.*2 Synthesis of racemic Ustilaginoidin A and Its Related Compounds. (2).*4 Synthesis of racemic Ustilaginoidin A,

(Faculty of Pharmaceutical Sciences, University of Tokyo*3)

Racemic ustilaginoidin A was synthesized by the oxidative coupling of nor-rubrofusarin dimethyl ether C (Ⅱ) and rubrofusarin monomethyl ether A (Ⅲ), were employed as the material for condensation.

(Received March 2, 1967)

In the present paper, we report the synthesis of racemic ustilaginoidin A by the oxidative coupling of nor-rubrofusarin (I) whose synthesis was discussed in the previous paper.1)

As the direct oxidative coupling of nor-rubrofusarin was unsuccessful forming resinous substances, dimethyl ethers of nor-rubrofusarin having a free hydroxyl at the ortho or para position of C(9), nor-rubrofusarin dimethyl ether C (Ⅱ) and rubrofusarin monomethyl ether A (Ⅲ), were employed as the material for condensation.

Nor-rubrofusarin dimethyl ether C (Ⅱ) was prepared starting from nor-rubrofusarin (I). Partial acetylation of (I) using acetic anhydride and sodium acetate at 65° for 40 min. yielded 7-monoacetate (Ⅳ) which was methylated with dimethyl sulfate to afford 5,6-dimethyl ether 7-acetate (Va). Deacetylation of Va with 10% H₂SO₄ gave nor-rubrofusarin dimethyl ether C (Ⅱ), m.p. 276° (decomp.).

Using diazomethane for methylation of 7-monoacetate (Ⅳ), Va and Vb, m.p. 204°-205°, were afforded in the yield of 36.7% and 19%, respectively. The latter compound (Vb) gave nor-rubrofusarin 5-monomethyl ether (Ⅴ)3) on deacetylation.

The oxidative coupling of Ⅱ and Ⅲ were performed under the following conditions (Table I):

<table>
<thead>
<tr>
<th>Exp. No.</th>
<th>Oxidating reagents and conditions</th>
<th>Yield Ⅱ (%)</th>
<th>Recovering Ⅱ (%)</th>
<th>Yield Ⅲ (%)</th>
<th>Recovering Ⅲ (%)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>O₃ Stream in EtOH under UV illumination*5</td>
<td>—</td>
<td>—</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>2</td>
<td>FeCl₃ (1 moles) in 75% sq. dioxane</td>
<td>25</td>
<td>33</td>
<td>25</td>
<td>25</td>
</tr>
<tr>
<td>3</td>
<td>FeCl₃ (2 moles) in 75% sq. dioxane</td>
<td>32</td>
<td>trace</td>
<td>54~47</td>
<td>3.3</td>
</tr>
<tr>
<td>4</td>
<td>FeCl₃ (2 moles) in 75% sq. dioxane</td>
<td>27</td>
<td>25</td>
<td>25</td>
<td>trace</td>
</tr>
</tbody>
</table>

*1 Hongu, Tokyo (巖下義和, 柴田承二).
*2 Part XXVI. E. Morishita, S. Shibata: This Bulletin, 15, 1765 (1967).
The best yield of oxidative coupling was obtained when the monomer was treated with 2 moles of ferric chloride in boiling 75% aq. dioxane (Exp. No. 3). The ultraviolet (UV)-spectra of the oxidative coupling products, VII and VIII, showed bathochromic shift in comparison with those of II and III, respectively. The NMR spectra in pyridine d-5 of VII and VIII gave 2 aromatic protons at 7.39 and 6.98 p.p.m., and 7.61 and 7.23 p.p.m., respectively, while the signals corresponding to the aromatic proton of C9 in II and III disappeared. These facts proved that the coupling took place at C9 of the monomers. The compounds VII and VIII were methylated with dimethyl sulfate to afford 5,5'-6,6',8,8'-hexamethoxy-2,2'-dimethyl-9,9'-bi[4H-naphtho[2,3-b]pyran-4-one], m.p. 310° (decomp.), (X), which was demethylated with hydroiodic acid to yield a dark red crystalline compound, 5,5',6,6'8,8'-hexahydroxy-2,2'-dimethyl-9,9'-bi[4H-naphtho[2,3-b]pyran-4-one], m.p. >320° (X). In comparison of the IR-spectra (KBr tablet) and thin-layer chromatograms, the product (X) was proved to be identical with racemic ustilaginoidin A (X) which was prepared from natural α-ustilaginoidin A, [α]D +384° (dioxane), by sublimation in high vacuum. The identity of X and racemic ustilaginoidin A hexamethyl ether (XI) prepared by the methylation of X was also established by the comparison of IR-spectra (KBr tablet) and thin-layer chromatograms, whereas α-ustilaginoidin hexamethyl ether, m.p. 256°; [α]D +89.5° (tetrahydrofurane), showed some different properties, such as in melting point, with the corresponding synthetic racemic compound (XI).

<table>
<thead>
<tr>
<th>α-Ustilaginoidin A</th>
<th>sublimation</th>
<th>racemic Ustilaginoidin A (X)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Methylation</td>
<td>X</td>
<td>Methylation</td>
</tr>
<tr>
<td>α-Ustilaginoidin A</td>
<td></td>
<td>racemic Ustilaginoidin A (X)</td>
</tr>
<tr>
<td>Hexamethyl ether</td>
<td></td>
<td></td>
</tr>
</tbody>
</table>

Experimental

8-Acetoxy-5,6-dihydroxy-2-methyl-4H-naphtho[2,3-b]pyran-5-one (IV) — A mixture of nor-rubrofusarin (I) (1 g), AcONa (0.6 g), AcOH (12 ml) and Ac2O (70 ml) was warmed at 65° on a water bath for 40 min. The reaction mixture was treated by the usual method and the product was chromatographed on silicic acid using the mixed solvent of CHCl3-MeCO (9:1). The first orange yellow band was eluted and recrystallized from benzene to give orange red prisms, m.p. 228~229° (0.8 g, 69%). The starting material (I) (19%) was recovered from the second band. On the other hand, a small amount of nor-rubrofusarin diacetate, m.p. 203~204°, was obtained from the mother liquor of recrystallization of the main product. *Anal.* Calcd. for C14H10O2: C, 64.00; H, 4.00. Found: C, 64.07; H, 3.81. UV λmax mλ (log ε): 218 (4.26), 269 (4.64), 350 (3.14), 412 (3.74). IR νmax cm⁻¹: 3376 (OH), 1770, 1665 (C=O).

8-Acetoxy-5,6-dimethoxy-2-methyl-4H-naphtho[2,3-b]pyran-4-one (Va) — The compound (IV) (0.6 g) was methylated by refluxing in Me2CO (150 ml) for 12 hr. with Me3SO4 (2.5 ml) and K2CO3 (2.7 g). After filtration and evaporation in vacuo, the residue was decomposed with ice water and extracted with CHCl3. The extracts were purified by chromatography using benzene-acetone (9:1) as the solvent on silica gel.
The second yellow fluorescent band gave the methyl ether as pale yellow needles, m.p. 226–227° (from MeOH) (0.4 g., 61.2%). *Anal.* Calcd. for C₃₆H₄₂O₅: C, 65.85; H, 4.88. Found: C, 66.03; H, 4.99. IR νₑₓₑₓₑ showcms⁻¹: 1762, 1655 (C=O).

8-Acetoxy-6-hydroxy-3-methoxy-2-methyl-4H-naphtho[2,3-b]pyran-4-one (Vb)—The compound (Vb) (0.1 g.) dissolved in benzene was methylated with an ethereal CH₃₂ [prepared from N-nitrosomethyleurea (1 g.)]. After standing overnight, the solvent was removed in vacuo. The product was chromatographed on silica gel using benzene-acetone (4:1) as the solvent. This first blue fluorescent band was eluted and crystallized form EtOH to give yellow needles (Vb), m.p. 204–205° (0.2 g., 19%), and from the second band, the compound (Va) (0.4 g., 36.7%) was separated. This product (Vb) is soluble in 5% NaOH showing an orange red color and a light blue color with Gibbs' reagent. *Anal.* Calcd. for C₂₂H₂₆O₇·H₂O: C, 63.18; H, 4.64. Found: C, 63.34; H, 4.86. IR νₑₓₑₓₑ showcms⁻¹: 3390 (OH), 1766, 1650 (C=O). Hydrolysis of Vb with 10% H₂SO₄ in EtOH produced orange yellow needles (from EtOH), m.p. 235–237° (decomp.); identical with nor-rubrofusarin 5-monomethyl ether (V).†

8-Hydroxy-5,6-dimethoxy-2-methyl-4H-naphtho[2,3-b]pyran-4-one (II) (Rubrofusarin Monomethyl Ether) —Va (1.0 g.) dissolved in EtOH (155 ml.) was refluxed for 30 min. on a steam bath with 10% H₂SO₄ (75 ml.). After removal of the solvent in vacuo, the separated yellow product was recrystallized from 75% dioxiane to obtain yellow needles, m.p. 275° (decomp.) (0.8 g., 87.5%). *Anal.* Calcd. for C₁₉H₁₆O₄(dried over 150° in vacuo for 6 hrs.): C, 67.13; H, 4.89. Found: C, 66.93; H, 4.81. UV λₑₓₑₓₑ mp (log ε): 225 (4.47), 247 (4.33), 273 (4.63), 382 (3.78). IR νₑₓₑₓₑ showcms⁻¹: 3400, 3200 (OH), 1645 (C=O). NMR δₓₓₓₓ xxxxxx: 7.35 (H, s), 7.02 (H, d, J = 2.5 c.p.s.), 6.75 (H, d, J = 2.5 c.p.s.), 5.99 (H, s) [arom. H]; 4.10 (3H, s), 3.86 (3H, s) [OCH₃]; 2.11 (3H, s) [CH₃].

8.8'-Dihydroxy-5.5',6.6'-tetramethoxy-2.2'-dimethyl-9.9'-bi[4H-naphtho[2,3-b]pyran-4-one] (VII) —Exp. No. 2: To a hot solution of II (0.3 g., 0.001 mole) in 75% dioxiane (40 ml.), FeCl₃·6H₂O (0.3 g., 0.001 mole) dissolved in H₂O was added dropwise for 10 min. under refluxing. Immediately after the addition of reagent, the reaction mixture was poured into ice water (120 ml.). The separated solid was extracted with CHCl₃ repeatedly and the extracts were washed with H₂O and dried. After concentration, it was chromatographed on CaHPO₄ using mixed solvents of benzene-acetone (4:1) and (2:1). From the fluorescent band, the starting material (II) (0.1 g., 33%) was recovered unchanged, and the next band gave yellow prisms (from 75% dioxiane), m.p. >320° (0.07 g., 25%). [α]D 0° (pyridine, c = 0.15/100 ml.). It is soluble in 5% NaOH and insoluble in usual organic solvents. *Anal.* Calcd. for C₂₂H₂₅O₅(dried over at 180°): C, 67.37; H, 4.56. Found: C, 67.20; H, 4.40. UV λₑₓₑₓₑ mp (log ε): 227 (4.71), 249 (4.65), 265 (4.72), 288 (4.95). IR νₑₓₑₓₑ showcms⁻¹: 1660 (C=O). NMR δₓₓₓₓ xxxxxx: 7.39 (H, s), 6.93 (H, s), 6.04 (H, s) [arom. H]; 4.16 (3H, s), 4.10 (3H, s) [OCH₃]; 1.92 (3H, s) [CH₃].

Exp. No. 3: With FeCl₃·6H₂O (0.4 g., 0.0015 mole), II (0.2 g., 0.0007 mole) dissolved in 75% dioxiane (40 ml.) was treated in the same manner as described above. VII was produced in a yield of 0.06 g. (32%). II was not recovered.

Exp. No. 4: The solution of VII (0.2 g., 0.0007 mole) in 75% dioxiane (40 ml.) was reacted with FeCl₃·6H₂O (0.4 g., 0.0015 mole) under O₂-stream and irradiation of a mercury arc lamp. The yield of VIII was 0.05 g. (27%), and of II (0.05 g., 25%) was recovered.

6.6'-Dihydroxy-5.5',8.8'-tetramethoxy-2.2'-dimethyl-9.9'-bi[4H-naphtho[2,3-b]pyran-4-one] (VIII) —Exp. No. 1: VIII was not yielded by boiling solution of III (0.05 g.) in EtOH (10 ml.) under UV-illumination and O₂-stream.

Exp. No. 2: To a refluxed solution of III (0.2 g., 0.0007 mole) in 75% dioxiane (20 ml.), FeCl₃·6H₂O (0.2 g., 0.0007 mole) in H₂O (5 ml.) was gradually dropped for 10 min. and then ice water was added to the reaction mixture. The reaction mixture was extracted with CHCl₃, and after evaporation, the residue was purified by chromatography on silica gel using benzene-acetone (4:1) as the solvent. From the first yellow fluorescent band, the starting material (III) (0.05 g., 25%) was recovered and the second pale yellow band was eluted and recrystallized from 75% dioxiane to give orange yellow needles, m.p. 320° (decomp.), in a yield of 0.05 g. (25%). It is soluble in 5% NaOH to give a red solution but insoluble in usual organic solvents. [α]D 0° (dioxiane, c = 0.14/100 ml.). *Anal.* Calcd. for C₂₅H₂₃O₅·½C₂H₅OH: C, 66.45; H, 4.89. Found: C, 66.50, 66.59; H, 4.92, 4.74. UV λₑₓₑₓₑ mp (log ε): 228 (4.54), 268 (4.67), 289 (4.76), 334 (3.60), 4.05 (3.87). IR νₑₓₑₓₑ showcms⁻¹: 3300 (OH), 1648 (C=O). NMR δₓₓₓₓ xxxxxx: 7.61 (H, s), 7.23 (H, s), 6.00 (H, s) [arom.-H]; 4.26 (3H, s), 3.74 (3H, s) [OCH₃]; 1.95 (3H, s) [CH₃].

Exp. No. 3: In a yield of 0.07–0.08 g. (47–54%), VIII was obtained from III (0.15 g., 0.0005 mole) by treatment with FeCl₃·6H₂O (0.3 g., 0.001 mole) in 75% dioxiane solution (20 ml.) in the same manner as described above.

Exp. No. 4: The reaction of III (0.2 g., 0.0007 mole) in 75% dioxiane (20 ml.) and FeCl₃·6H₂O (0.4 g., 0.0015 mole) under UV-illumination and O₂-stream by the same method as described above gave VIII (0.05 g., 25%), and III was not recovered.

5.5',6.6',8.8'-Hexamethoxy-2.2'-dimethyl-9.9'-bi[4H-naphtho[2,3-b]pyran-4-one] (IX; racemic Ustilaginadin A Hexamethyl Ether) —Exp. No. 1: VIII (0.05 g.) was methylated by refluxing in acetone (20 ml.) with Me₂SO₄ (0.15 ml.) and K₂CO₃ (0.5 g.) for 5 hr. After the treatment by the usual process, the product was purified by chromatography on silica gel using benzene-acetone (4:1) as the solvent to obtain pale yellow needles (from
EtOH), m.p. 310°(decomp.) (0.05 g., 95%), identical with racemic ustilaginoidin A hexamethyl ether. Anal. Calcd. for C_{64}H_{36}O_{9}: C, 68.23; H, 5.02. Found: C, 68.27; H, 4.94. UV λ_{max} mp (log ε): 228 (4.76), 263 (4.82), 289 (4.97), 332 (3.82), 393 (4.11). IR ν_{max} cm$^{-1}$: 1655 (C=O). NMR δ_{H}: 3.20 (H, s), 3.25 (H, s), 4.12 (H, s) [arom. H]; 5.89 (3H, s), 5.97 (3H, s), 6.21 (3H, s) [OCH$_3$]; 7.84 (3H, s) [CH$_3$].

2) Methylation of III (0.1 g.) with Me$_2$SO$_4$ (0.2 ml.) and K$_2$CO$_3$ (1 g.) in Me$_2$CO (40 ml.) by the same way as described above gave X (0.1 g., 95%). Anal. Calcd. for C$_{32}$H$_{36}$O$_9$: C, 68.23; H, 5.02. Found: C, 68.09; H, 5.08.

5'-6'6',8'-Hexahydroxy-2',2'-dimethyl-9',9'-bi[4H-naphtho[2,3-b]pyran-4-one] (X) (racemic Ustilaginoidin A)—A mixture of X (0.06 g.) in HI (sp. gr. 1.7; 7 ml.) and Ac$_2$O (1.5 ml.) was heated at 110°-120° for 5 hr. After cooling, the reaction mixture was poured into ice water and the separated orange red precipitates were collected and then washed with 5% NaHSO$_3$ and water. Purification by chromatography on silicic acid using benzene-acetone (4:1) as the solvent and recrystallization from dioxane afforded red prisms, m.p. >320° (0.015 g., 29%), which was identified by the IR spectra and TLC with racemic ustilaginoidin A prepared from natural α-ustilaginoidin A by sublimation in high vacuum. Anal. Calcd. for C$_{32}$H$_{36}$O$_9$: C, 65.37; H, 3.50. Found: C, 65.08; H, 3.65. UV λ_{max} mp (log ε): 226 (4.65), 289 (4.79), 333 (3.89), 348 (3.83), 422 (3.98). IR ν_{max} cm$^{-1}$: 3370 (OH), 1655 (C=O).

The authors are indebted to Dr. M. Takido, Pharmaceutical Institute of Nihon University for supplying the seeds of Cassia tora L. from which one of the starting materials, rubrofusarin, was prepared and to Dr. T. Hino and Miss Y. Shibunuma, National Institute of Radiological Sciences for the NMR spectral measurements.

Microanalysis and UV and IR spectral measurements were carried out by the members of Microanalytical Laboratory of this Faculty, to whom authors thanks are due.