N-terminal amino acids are characterized as DNP-derivatives simultaneously in the C-terminal determination procedure.

We are greatly indebted to Professor Emeritus E. Ochiai and Professor S. Yamada of the University of Tokyo for their encouragement throughout this work.

Received August 31, 1966

2-(2-Heptenyl)-3-methyl-4-quinolinol from a Pseudomonas

Recently K. Arima and others have established the structure of pyrrolopropin (I), a metabolite of a Pseudomonas. From the same strain, the authors have isolated isopyrrolopropin (II) and oxypyrrrolopropin (III). In the course of our investigation, the fourth metabolite was isolated from the acetone extract of the bacterial cells.

This substance, m.p. 255°C (decomp.), possesses an empirical formula of C_{17}H_{24}ON (Anal. Calcd.: C, 79.96; H, 8.29; N, 5.49. Found: C, 80.27; H, 8.57; N, 5.45. mol. wt. 255 by mass spectrometry). The UV spectrum (Fig. 1) has a bifurcation at the 320~340 μm region in the neutral medium, which is characteristic in 4-quinolinol derivatives. The absorption of hydroxy group in the IR spectrum appears broad at 3200~2500 cm⁻¹. The NMR spectrum (60 Mc) in CF₃COOH exhibits the following signals: δ=8.48 p.p.m. (1H, broad doublet), ca. 8.0 p.p.m. (3H, multiplet), ca. 5.8 p.p.m. (2H, multiplet), 3.72 p.p.m. (2H, doublet), 2.53 p.p.m. (3H, singlet), ca. 2.2 p.p.m. (2H, broad quartet), ca. 1.4 p.p.m. (4H, broad multiplet) and 0.95 p.p.m. (3H, destroyed triplet). Suitable structure for the metabolite is represented by VI. The presence of 2-heptenyl group is supported by the appearance of the base peak at m/e (M=43) on the mass spectrum.

Catalytic reduction in EtOH in the presence of Adams platinum oxide gave dihydro derivative (V), m.p. 231~233°C (C_{17}H_{20}ON, Anal. Calcd.: C, 79.33; H, 9.01; N, 5.44. Found: C, 79.62; H, 9.22; N, 5.36). On the other hand, the reduction in glacial AcOH in the presence of the same catalyst afforded hexahydro derivative (VI), m.p. 268~270°C (C_{17}H_{22}ON, Anal. Calcd.: C, 78.11; H, 10.41; N, 5.36. Found: C, 78.26; H, 10.21; N, 5.36. The UV spectrum, \(\epsilon_{\text{max}} \)

$m_p (e) : 224 (20,200), 268 (14,300)$ (the addition of HCl moves the maxima to 244 m_p), indicates that the 4-hydroxy pyridine nucleus has not been changed during the reduction. $\mathbf{\Pi}$ has no aromatic proton signal in the NMR spectrum (60 Mc) in CF$_3$COOH: ca. $\delta = 2.9$ p.p.m. (6H, multiplet), 2.40 p.p.m. (3H, singlet), ca. 2.0 p.p.m. (4H, multiplet), ca. 1.4 p.p.m. (10H, broad multiplet) and 0.92 p.p.m. (3H, destroyed triplet). This fact shows that the methyl and the heptyl groups are attached to the pyridine nucleus. The structure of the metabolite can be extended from \mathbf{V} to 2-(2-heptyl)-3-methyl-4-quinolinol ($\mathbf{\Pi}$) or 2-methyl-3-(2-heptyl)-4-quinolinol ($\mathbf{\Pi}$). And the fact that some 2-n-alkyl-4-quinolinol81 have been isolated from certain strains of \textit{Pseudomonas}9 may explain $\mathbf{\Pi}$ to be preferable to $\mathbf{\Pi}$.

2-Heptyl-3-methyl-4-quinolinol (\mathbf{K}) was synthesized as follows. Ethyl 3-ketodecanate and aniline were condensed and the product (\mathbf{X}) was converted to methylated derivative (\mathbf{XI}) by metal sodium and methyl iodide in dry benzene. \mathbf{XI} was cyclized by reflux in diphenylether to give \mathbf{K}, which was identical with \mathbf{V} derived from the natural metabolite.

The position of the double bond is established by NMR (100 Mc) spectrum84 in CF$_3$COOH (Fig. 2). Two olefinic protons form the AB component of an ABX$_2$V$_3$ system: $\delta_A =$

\[\text{Fig. 2.} \]

81 2-Heptyl-4-quinolinol (Pyo Ib), 2-nonyl-4-quinolinol (Pyo Ic), 2-(1-oxygenyl)-4-quinolinol (Pyo II), 2-undecyl-4-quinolinol, 2-2-heptyl-4-quinolinol N-oxide, 2-octyl-4-quinolinol N-oxide, 2-nonyl-4-quinolinol N-oxide and 2-undecyl-4-quinolinol N-oxide.

82 We thank M.C. Woods, Tohoku University, for measurement of 100 Mc NMR spectrum.

5.66 p.p.m., δε=5.85 p.p.m., Δν=15.5 c.p.s., Δв=6.0 c.p.s., Δр=6.0 c.p.s. A doublet (J=6.0 c.p.s) at 3.72 p.p.m. is assigned to the two equivalent protons (C). Decoupling shows that these two protons are coupled to the clefinic proton (A). A quartet (doublet of triplets) from the two equivalent protons (D) is coupled to the clefinic proton (B) and also to the two adjacent methylene protons. Therefore, the structure of the metabolite is determined as 2-(2-heptenyl)-3-methyl-4-quinolinol (XII).

Research Laboratories, Fujisawa Pharmaceutical Co., Ltd., Kashima-cho, Higashi-yodogawa-ka, Osaka

Masashi Hashimoto (橋本真志) Kiyoshi Hattori (服部 清)

Received December 12, 1966

UDC 615.89-011: 547.92.05

Studies on the Chemical Constituents of Chinese Drug “Wujiapi”

A Chinese drug “Wujiapi” (五加皮) was described in Chinese literatures since two thousand years ago and widely employed as a tonic. As the original plants of this drug, more than seventeen plants are recorded, most of which belong to Araliaceae, but only one, Periploca sepium Bux. (北五加皮), belongs to Asclepiadaceae.1a, 1b

It should be noted that the plants of different families are employed under the same name for the same purpose. The drug material, “Wujiapi,” which was imported from China was extracted with hot ethanol. After evaporation of the solvents in vacuum, the syrupy brown residue was dissolved in water and extracted with benzene. The benzene-soluble fraction was washed with 2N NaOH (Fr-I) and then 2N HCl (Fr-II).

Dried material (Wujiapi)

↓ extd. with MeOH or EtOH

↓ evapd., added H2O

Aq. soln. (suspension)

↓ extd. with benzene

↓

Benzene layer

↓ extd. with 2N NaOH

↓ H2O layer

↓ extd. with n-BuOH satrd. with H2O

Acidic and phenolic fraction [Fr. I]

↓ Benzene layer

↓ n-BuOH layer [Fr. IV]

Basic fraction [Fr. II]

↓ Benzene layer (Neutral fraction) [Fr. III]

Chart 1. Extraction and Isolation

1a) “Zhong Yao Zhi” (中药志), Vol. III, p. 402 (Pharmaceutical Institute, Chinese Academy of Medical Science, Peking (1961)). 1b) J. Sato: On the Chinese Medicinal Plants (漢薬の原植物), p. 34 (Japan Society for Promotion of Science, Tokyo (1959)).