Synthesis of Purine Cyclonucleoside having 8,3'-O-Anhydro Linkage

Since the first purine cyclonucleoside has been reported, a number of purine nucleosides having 8,2''-(S- and O)-, 2''+ 8,5''-(S- and O)-, and 8,3''-S-O anhydro linkage were synthesized. However, the synthesis of a cyclonucleoside having 8,3'-O-anhydro linkage could not be performed, mainly because of the difficulty in the cyclization of 3'-tosylated 8-oxyadenosine presumably due to a large steric distortion. As the first 2,3'-cyclonucleoside has been synthesized in the pyrimidine deoxyribonucleoside, we attempted to synthesize 8,3'-anhydro-8-oxy-9-β-D-(2-deoxythreopentofuranosyl)adenine (I) starting from 2'-deoxyadenosine.

8-Bromo-2'-deoxyadenosine was converted to 5'-trityl derivative (III) (UV: $\lambda_{\text{max}}^{\text{UV}}$, 263 mμ, $\lambda_{\text{max}}^{\text{IR}}$, 265 mμ. IR: ν_{max} cm$^{-1}$: 1075 (sugar C-O-C), 700 (trityl). Paper chromatography: Rf (A) 0.84, Rf (B) 0.91, Rf (C) 0.90 in the yield of 78%.

\[
\begin{align*}
\text{NH}_2 & \quad \text{II} \quad \text{Br} \quad \text{TrCl} \quad \text{III} \quad \text{TsCl} \quad \text{IV} \\
\text{HOH}_2 & \quad \text{Br} \quad \text{III} \quad \text{TsOH}_2 \quad \text{IV} \\
\text{NH}_2 & \quad \text{I} \quad \text{H}^+ \quad \text{VI} \quad \text{AcONa/Ac}_2 \text{O} \\
\text{NH}_2 & \quad \text{V} \quad \text{AcONa/DMF} \quad \text{ii) NH}_3 \\
\end{align*}
\]

Chart 1.

*1 A preliminary account of this study has been presented at the XXI International Congress IUPAC, 1967, Prague.
*2 All crystalline compounds appeared in this paper had the elemental analysis value satisfactorily in agreement with the theoretical one.
*3 Rf (A) stands for the Rf value in the solvent A. Solvent used were: A, n-BuOH-H$_2$O, 86:14; B, iso-PrOH-ammonium-H$_2$O, 7:1:2; C, n-BuOH-AcOH-H$_2$O, 5:2:3; D, n-PrOH-H$_2$O (pH 6.5), 3:1; E, EtOH-M NH$_2$OAc (pH 7.5), 7:3.

2) *Idem*: This Bulletin, 15, 94 (1967).
Compound III was then tosylated with 1.5 equivalents of tosyl chloride. 3'-O-Tosyl-5'-O-trityl-8-bromoadenosine (V) (Prisms from EtOH-dioxane, m.p. 176~177°C. UV: λ\text{max} 264, 272 (shoulder); λ\text{max}\text{H} 264 m\mu; λ\text{max}\text{H} 264 m\mu. IR: ν\text{max} 1570 (covalent tosylate), 1070 (sugar C-O-C), 700 (trityl). Paper chromatography: Rf (A) 0.87, Rf (B) 0.82, Rf (C) 0.89, thus obtained, was converted to 8-oxy derivative by the treatment with anhydrous sodium acetate in acetic anhydride, which was superior to acetic acid in preventing cleavage of the glycosidic linkage in 2'-deoxynucleoside. Resulting 8-oxy compound (V) (amorphous powder. UV: λ\text{max} 287 m\mu; λ\text{max}\text{H} 283 m\mu; λ\text{max}\text{H} 267 m\mu; 301 m\mu. IR ν\text{max} cm\text{⁻¹}: 1740~1745 (8-CO), 1700~1710 (acetamide), 1170 (covalent tosylate). Paper chromatography: Rf (A) 0.89, Rf (B) 0.83, Rf (C) 0.90 was finally subjected to cyclization by the treatment with sodium acetate in DMF. Heating for 1 hour, followed by the ammoniacal removal of N'-acetyl group, afforded a trityl-cyclonucleoside (V) (m.p. 266° from n-ProOH. UV: λ\text{max} 262 m\mu, λ\text{max}\text{H} 262 m\mu (ε 15400), λ\text{max}\text{H} 262 m\mu. IR ν\text{max} cm\text{⁻¹}: 700 (trityl), no covalent tosylate. Paper chromatography: Rf (A) 0.76, Rf (B) 0.70, Rf (C) 0.80, Rf (E) 0.63. Compound V was refluxed in 80% acetic acid for 15 min. and purified by cellulose column chromatography. Elution with solvent B gave crystalline cyclonucleoside (I) (m.p. 266.5~267°C. UV: λ\text{max} 262 m\mu (ε 14200), λ\text{max}\text{H} 263 m\mu (ε 14200), λ\text{max}\text{H} 263 m\mu (ε 14600). IR: no trityl was found. Paper chromatography: Rf (A) 0.25, Rf (B) 0.54, Rf (D) 0.62, Rf (E) 0.63. The ultraviolet absorption properties shifted slightly toward bathochromic region from those of 8-methoxyadenosine9 and elemental analysis data suggested the structure 8,3'-anhydro-8-oxy-9-β-d-(2-deoxythreopentofuranosyl)adenine for compound I. This structure was further supported by the optical rotatory dispersion study of I. As shown in Fig. 1, the optical rotatory dispersion (ORD) curve of I has a positive Cotton effect around 260 m\mu. This is in contrast to the natural purine nucleoside, which has negative Cotton effect in the major absorption region.11 The inversion of the Cotton effect could be ascribed to the rotation of base around the nucleosidic linkage and the fixation at certain angle by the anhydro linkage.12

Fig. 1. Optical Dispersion Curve of 8,3'-Anhydro-8-oxy-9-β-d-(2-deoxythreopentofuranosyl)adenine

Faculty of Pharmaceutical Sciences, Hokkaido University, Sapporo

Received June 5, 1967

Morio Ikehara (池原満男)
Masakatsu Kaneko (金子正勝)