Acknowledgement We wish to thank Prof. H. Yajima of Kyoto University and Prof. S. Sakakibara of Osaka University for their valuable suggestion. We are also grateful to Drs. S. Tatsuoka, Y. Abe, K. Morita and Y. Sanno of this Division for their encouragement throughout this work.

Chemical Research Laboratories,
Research & Development Division,
Takeda Chemical Industries, Ltd.
Juso, Higashiyodogawa-ku, Osaka

Received December 7, 1970

MASAHIKO FUJINO
CHITOSHI HATANAKA
OSAMU NISHIMURA

Imine-enamine Tautomerism and Ring Contraction of 2-Methoxy-4,5,6,7-tetrahydro-1H-azepin-4-ones

Recent investigations have established that enamineketone (I) and lactim ether (II) are in imine-enamine tautomeric equilibrium, and that the enamine form predominates in the former case1) and the imine form does in the latter case.2) However, there has been no information on imine-enamine tautomerism of β-alkoxy-enamineketone.3) In the present work, it is shown that 6,6-dimethyl-2-methoxy-4,5,6,7-tetrahydro-1H-azepin-4-one (III), prepared by Curtius—type rearrangement of 3-azido-5,5-dimethyl-2-cyclohexen-1-one, exists as enamine form (IIIA) in polar solvent such as ethanol and dimethyl sulfoxide, as imine form (IIIB) in non-polar solvent such as carbon tetrachloride and as a mixture of both forms in chloroform. The result would show that the enamine and imine forms of III have comparable stabilities in solution. It is also shown that the azepinone (III) undergoes ring contraction by treatment with dilute acid to give methyl 4,4-dimethyl-2-pyrrolidylideneacetate (V). It

has recently been reported that the azepine derivatives undergo ring contractions with acid and base to give pyrroles, pyridines\(^4\) and \(\gamma\)-lactones.\(^5\) The present ring contraction provides a novel type of example and also a facile synthetic route to V and its analogues.

![Chart 1](image1)

Treatment\(^6\) of 3-chloro-5,5-dimethyl-2-cyclohexen-1-one with sodium azide in methanol (containing small amount of water) followed by refluxing a methanolic solution of the resulted 3-azido-5,5-dimethyl-2-cyclohexen-1-one for 4 hr gave a 36% yield of III, mp 146–146.5\(^\circ\) (from acetone–pet.ether). The structure of III was proved by hydrolysis of III to 6,6-dimethylhexahydroazepine-2,4-dione (IV)\(^6,7\) [with 10% HClO\(_4\) (67% yield), with 10% KOH (59% yield)] and by the following spectral analyses.

The ultraviolet (UV), infrared (IR), and nuclear magnetic resonance (NMR) spectra of III in carbon tetrachloride show that III exists solely as the imine tautomer (IIIB) in this solvent; UV: no observed absorption maximum between 250 and 340 m\(\mu\). IR \(\nu_{\text{max}}\) cm\(^{-1}\): 1720 (C=O) and 1665 (C=N). NMR \(\tau\): 8.98 (6H, s, di-CH\(_3\)), 7.78 (2H, s, COCH\(_3\)), 6.86 (4H, s, CH\(_2\)N and COCH\(_3\)C=N) and 6.34 (3H, s, OCH\(_3\)). Spectra in polar solvent show that III exists solely as the enamine tautomer (IIIA); UV \(\lambda_{\text{max}}\) (EtOH) m\(\mu\): 290 (log \(\varepsilon\) 4.42). NMR (DMSO-d\(_6\)) \(\tau\): 9.06 (6H, s, di-CH\(_3\)), 7.83 (2H, s, COCH\(_3\)), 7.13 (2H, d, CH\(_2\)N), 6.40 (3H, s, OCH\(_3\)), 5.65 (1H, d, CH=) and 2.1–2.7 (1H, b-s, NH). The spectra in chloroform show that III exists as a 3:2 mixture of IIIA and IIIB; IR \(\nu_{\text{max}}\) cm\(^{-1}\): 1710 (C=O), 1660 (C=N) and 1570 [CO–C=C(OCH\(_3\))–N]. NMR \(\tau\): signals due to IIIA, 8.92 (3/5×6H, s, di-

![Chart 2](image2)

A New Trichloro-depsidone from a Lichen of the Genus Caloplaca

Very recently, Santesson\(^1\) has reported an extensive phytochemical study on the anthraquinone components in Caloplaca spp. (Caloplacaceae), where he has covered 230 species of the genus, while shortly before that Bohman surveyed the anthraquinones in some lichens of the same genus.\(^2\) On the other hand, during the course of the investigations on the lichen phenolic products\(^3\) we have been aware of the rich phenolic components of an orange crustose lichen\(^4\) belonging to the genus Caloplaca collected at Settsu-kyō in Osaka prefecture. Since no work has been done on the metabolic products other than anthraquinones of Caloplaca spp., we have performed the structural study on the phenolic products of the lichen and reached a conclusion leading the structures I and II to the depsidones as described below.

Successive extraction of the lichen using ether and acetone followed by silica gel chromatography (column and thin-layer chromatography (TLC)) furnished four anthraquinone derivatives, i.e. parietin (III) (0.80%), fallacinal (IV) (0.15%), fallacinol (V) (trace), and emodin (VI) (trace), in addition to two chlorine-containing depsidones tentatively designated Ca-III (1.78%) and Ca-II (0.45%).

- The identification of the lichen is in progress.

4. The identification of the lichen is in progress.