Polycyclic N-Hetero Compounds. XIII. Reactions of Pyridine N-Oxides with Formamide

TAKAJI KOYAMA, TETSUTO NANBA, TAKASHI HIROMA, SHINJI OHMORI, AND MASATOSHI YAMATO

Faculty of Pharmaceutical Sciences, Okayama University

(Received July 31, 1976)

Reactions of pyridine (I, IV, X, XIII) or condensed pyridine (VII, XVI, XVIII) N-oxides with formamide were described. Although pyrimidinyl cyclization of active methyl group was unsuccessful, introduction of carbamoyl group at pyridine ring carbon adjacent to nitrogen atom was successful, i.e., 6-methylpyridine-2-(II), 4-methylpyridine-2-(V), 4-methylquinoline-2-(VIII), 5-methylpyridine-2-(XI), pyridine-2-(XIV), quinoline-2-(XVII), and isoquinoline-1-(XIX) carboxamides were obtained.

Keywords—pyridine N-oxides; formamide; active methyl group; carbon-carbon bond formation; electrophilic substitution; N-heteroaromatic amides;

The previous paper described that 4-methylpyrimidines were converted to 4-(5-pyrimidinyl)pyrimidines by heating with formamide in the presence of phosphoryl chloride or with trisformylaminomethane in formamide. Since the authors were interested in the activity of methyl group of their N-oxides, the reactions of N-heteroaromatic N-oxides containing active methyl group with formamide were investigated. However, carbamoylation was resulted at position of pyridine ring without pyrimidinyl cyclization of methyl group. Moreover same results were successful in pyridine N-oxides without active methyl group. The present paper describes a novel facile carbamoylation reaction of pyridine and condensed pyridine N-oxides.

As shown in Chart 1, at first, pyridine and condensed pyridine N-oxides with methyl group in activated position were used as starting materials and these N-oxides were heated with formamide without catalyst. The reaction of 2-methylpyridine 1-oxide (I) with formamide at 180—190° for 28 hr gave colorless needles, mp 116°. The molecular formula of the substance agreed with C9H6ON2 and the infrared (IR) absorption and proton magnetic resonance (PMR) spectral data suggested the structure of the product as 6-methylpyridine-2-carboxamide (II), which was identified with the authentic sample prepared by Meyer's method. 2-Methylpyridine (III), deoxygenated product of I, was also obtained in our reaction mixture.

Analogously, the reaction of 4-methylpyridine 1-oxide (IV) with formamide gave 4-methylpyridine-2-carboxamide (V) and deoxygenated 4-methylpyridine (VI). The similar reaction of 4-methylquinoline 1-oxide (VII) with formamide afforded 4-methylquinoline-2-carboxamide (VIII) and 4-methylquinoline (IX). The PMR spectrum of VIII exhibited one-proton singlet at δ 8.12 attributable to C-3-H, consequently the position of carboxamide group was determined at C-2.

2) Location: I—I, Tsushima-naka 1-chome, Okayama, 700, Japan.
Since the above methylpyridine N-oxides gave 2-carbamoylpyridines without pyrimidinyl cyclization, pyridine N-oxides without active methyl group were subjected to the similar reaction with formamide to generalize this carbamoylation reaction. The reaction of 3-methylpyridine 1-oxide (X) with formamide gave 5-methylpyridine-2-carboxyamide (XI) and 3-methylpyridine (XII). The position of carbamoyl group was determined by PMR spectrum (refer to experimental part). The analogous reaction of pyridine 1-oxide (XIII) afforded pyridine 2-carboxyamide (XIV) and pyridine (XV). XIV was identified with authentic sample. Similarly, quinoline 1-oxide(XVI) gave quinoline-2-carboxyamide(XVII). The PMR spectrum of XVII exhibited two-proton AB quartet at low field attributable to

C–3 and C–4 protons, consequently the position of carboxyamide group was determined at C–2. The reaction of isoquinoline 2-oxide (XVIII) with formamide gave isoquinoline-1-carboxyamide (XIX)\(^9\) and isocarbostyril (XX).\(^{10}\) The position of carboxyamide group of XIX was determined at C–1 similar to XVII, and XX was identified with authentic sample.

As the result, pyrimidinyl cyclization product of methyl groups at 2- or 4-position of pyridine N-oxides was not isolated, but introduction of carboxyamide group to pyridine ring carbon was occurred and the new carbon-carbon linkage was formed.

As the representative carbon-carbon bond formation at pyridine 1-oxide ring carbon, reactions of pyridine 1-oxides with cyanide ion (introduction of CN group, Reissert reaction), active methylene compounds, enamines or enol ethers, and organometallic compounds were described.\(^{11}\) Referred to these reactions, the presumable reaction mechanism is shown in Chart 2.

![Chart 2](Image)

Okamoto and Yamada\(^{12}\) obtained purine by heating formamide at 170—180\(^\circ\). Since our reaction condition was similar to that of them, formation of purine was confirmed in the above all reactions on thin-layer chromatography (TLC).

Experimental

Melting points were determined with Yanagimoto micro melting point apparatus and uncorrected. IR spectra were recorded on Nippon Bunko DS-301 spectrometer. PMR spectra were taken with Hitachi R-22 spectrometer (90 MHz) in CDCl\(_3\) with tetramethylsilane as an internal standard (6 value), s, singlet; d, doublet; t, triplet; q, quartet; m, multiplet; b, broad. Mass Spectra were obtained with Shimadzu LKB-9000 instrument at 70 eV ionization potential.

General—A mixture of 0.03 mole of N-heteroaromatic N-oxide and 0.3 mole of HCONH\(_2\) was heated at 180—205\(^\circ\) until disappearance of the starting material (except for X) on TLC. After cooled, 30 ml of H\(_2\)O was added into the reaction mixture and then extracted with cyclohexane, benzene, and CHCl\(_3\) successively. Each extract was washed with H\(_2\)O, dried over Na\(_2\)SO\(_4\), and evaporated. Each residue was extracted several times with boiling cyclohexane. The cyclohexane-soluble fractions were cooled and deposited crystals were collected. Evaporation of the filtrate of carbamoylpyridines gave crude deoxygenated pyridines, identical with the authentic sample on TLC.

Reaction of 2-Methylpyridine 1-Oxide[1] with HCONH\(_2\)—A mixture of 3.27 g of I and 13.5 g of HCONH\(_2\) was heated at 180—190\(^\circ\) for 28 hr and the reaction mixture was worked up as described above. 0.11 g (2.7\%) of 6-methylpyridine-2-carboxyamide (II) was obtained as colorless needles, mp 116\(^\circ\) (reported mp 116\(^\circ\)).

Anal. Calcd. for C\(_9\)H\(_8\)O\(_2\): C, 61.75; H, 5.92; N, 20.58. Found: C, 61.72; H, 5.89; N, 20.41. Mass Spectrum m/e (M\(^+\)): 136. IR \(\text{cm}^{-1}\): 3420, 3130, 1650 (N–H), 1672 (C=O). PMR: 2.53 (3H, s, CH\(_3\)), 7.29 (1H, bd,

Reaction of 4-Methylpyridine 1-Oxide (IV) with HCONH₂ — A mixture of 3.27 g of IV and 13.5 g of HCONH₂ was heated at 185°C for 3 hr and the reaction mixture was worked up as described above. 0.17 g (4.1%) of 4-methylpyridine-2-carboxamidine (V) was obtained as colorless prisms, mp 130—131°C. Anal. Calcd. for C₉H₇NO₂: C, 61.75; H, 5.92; N, 20.58. Found: C, 61.74; H, 6.02; N, 20.50. Mass Spectrum (m/e (M++) : 136. IR νₑₓₛ cm⁻¹: 3370, 3230, 1660 (N-H), 1685 (C=O). PMR: 2.40 (3H, s, CH₃), 7.25 (1H, dd, J = 6 Hz, 2 Hz, C-5-H), 8.05 (1H, d, J = 7 Hz, C-6-H), 8.40 (1H, d, J = 6 Hz, C-6-H), 6.6—7.6 (2H, b, NH₂, disappeared with D₂O). Evaporation of the filtrate of V gave 0.15 g (6%) of 4-methylpyridine (VI).

Reaction of 4-Methylquinoline 1-Oxide (VII) with HCONH₂ — A mixture of 4.77 g of VII and 13.5 g of HCONH₂ was heated at 190°C for 4 hr and the reaction mixture was worked up usually. 0.72 g (13.7%) of 4-methylquinoline-2-carboxamidine (VIII) was obtained as colorless needles, after sublimation at 134—148°C on slide glass to colorless feathers, mp 139.5—140.5°C. Anal. Calcd. for C₁₆H₁₁NO₂: C, 70.55; H, 5.41; N, 15.05. Found: C, 71.23; H, 5.60; N, 15.70. Mass Spectrum (m/e (M++) : 196. IR νₑₓₛ cm⁻¹: 3420, 3240, 1684 (N-H), 1708 (C=O). PMR: 2.72 (3H, s, CH₃), 7.55—7.85 (2H, m, C-6, 7-H), 7.87—8.10 (2H, m, C-5, 8-H), 8.10 (1H, s, C-3-H), 5.8, 7.9 (each 1H, b, NH₂, disappeared with D₂O). Evaporation of the filtrate of VIII gave 0.04 g (1%) of 4-methylquinoline (IX) as crude oil.

Reaction of 3-Methylpyridine 1-Oxide (X) with HCONH₂ — A mixture of 3.27 g of X and 13.5 g of HCONH₂ was heated at 185—195°C for 28 hr and the reaction mixture was worked up usually. The hot cyclohexane-soluble fraction was fractionated with preparative TLC (Merck, aluminia PF₄₄₄; CHCl₃: acetone = 1:1). a) The fraction of RF value ca. 0.6—0.7 was collected and recrystallized from cyclohexane to give 0.06 g (1.5%) of 5-methylpyridine-2-carboxamidine (XI) as colorless prisms, after sublimation at 130—140°C on slide glass to colorless prisms, mp 180°C. Anal. Calcd. for C₉H₇NO₂: C, 61.75; H, 5.92; N, 20.58. Found: C, 61.69; 5.98; N, 20.70. Mass Spectrum (m/e (M++) : 136. IR νₑₓₛ cm⁻¹: 3410, 3280, 1650 (N-H), 1670 (C=O). PMR: 2.34 (3H, s, CH₃), 7.58 (1H, dd, J = 7 Hz, 2 Hz, C-4-H), 8.04 (1H, d, J = 7 Hz, C-3-H), 8.31 (1H, d, J = 2 Hz, C-6-H), 5.5, 7.8 (each 1H, b, NH₂, disappeared with D₂O). b) The fraction of RF value ca. 0.9—1.0 gave 0.25 g (10%) of crude 3-methylpyridine (XII). c) The fraction of RF value ca. 0.1—0.2 gave 0.2 g of X. The hot cyclohexane-insoluble fraction of the CHCl₃ extract in the general method was subjected to vacuum distillation to give 0.9 g of X, bp 154—157°C/16 mmHg, combined yield 1.1 g (37%).

Reaction of Pyridine 1-Oxide (XIII) with HCONH₂ — A mixture of 2.85 g of XIII and 13.5 g of HCONH₂ was heated at 195—205°C for 2.5 hr and the reaction mixture was worked up usually. 0.26 g (7.0%) of pyridine-2-carboxamidine (XIV) was obtained as colorless needles, mp 107.5°C (reported mp 107.2°C). Anal. Calcd. for C₇H₇NO₂: C, 59.01; H, 4.95; N, 22.94. Found: C, 59.25; H, 5.09; N, 22.70. Mass Spectrum (m/e (M++) : 122. IR νₑₓₛ cm⁻¹: 3430, 3170, 1610 (N-H), 1640 (C=O). PMR: 7.38 (1H, dd, J = 6 Hz, 5 Hz, 2 Hz, C-5-H), 7.80 (1H, dd, J = 7 Hz, 6 Hz, 2 Hz, C-4-H), 8.11 (1H, dd, J = 7 Hz, 2 Hz, C-3-H), 8.50 (1H, dd, J = 5 Hz, 2 Hz, C-6-H), 5.65, 7.95 (each 1H, b, NH₂, disappeared with D₂O). Evaporation of the filtrate of XIV gave 0.04 g (2%) of pyridine (XV).

Reaction of Quinoline 1-Oxide (XVI) with HCONH₂ — A mixture of 4.41 g of XVI and 13.5 g of HCONH₂ was heated at 195—205°C for 2.5 hr and the reaction mixture was worked up usually. 0.38 g (7.4%) of quinoline-2-carboxamidine (XVII) was obtained as colorless needles, mp 132.5—133°C (reported mp 133—139°C). Anal. Calcd. for C₁₇H₁₂NO₂: C, 69.75; H, 4.68; N, 16.27. Found: C, 69.61; H, 4.68; N, 16.15. Mass Spectrum (m/e (M++) : 172. IR νₑₓₛ cm⁻¹: 3420, 3110, 1612 (N-H), 1695 (C=O). PMR: 7.48—8.15 (4H, m, C-5,6,7,8-H), 8.25 (2H, s, C-3,4-H, this signal appeared at 8.03 and 8.35 as AB quartet in DMSO-d₆, J = 8 Hz), 5.8, 7.8 (each 1H, b, NH₂, disappeared with D₂O).

Reaction of Isoquinoline 2-Oxide (XVIII) with HCONH₂ — A mixture of 4.41 g of XVIII and 13.5 g of HCONH₂ was heated at 190—200°C for 4 hr and the reaction mixture was worked up usually, but crystallization of hot cyclohexane-soluble fraction was unsuccessful. Therefore, the cyclohexane, benzene, and CHCl₃ extracts were combined and then chromatographed over silica gel. The benzene eluate gave 0.11 g (5%) of isoquinoline (XXI). The benzene—CHCl₃ (1:1) eluate was recrystallized from cyclohexane to give 0.43 g (8.3%) of isoquinoline-1-carboxamide (XXII) as colorless prisms, mp 170—171°C (reported mp 168—170°C). Anal. Calcd. for C₁₇H₁₂NO₂: C, 69.75; H, 4.68; N, 16.27. Found: C, 69.82; H, 4.59; N, 16.38. Mass Spectrum (m/e (M++) : 172. IR νₑₓₛ cm⁻¹: 3410, 3155, 1620 (N-H), 1678 (C=O). PMR: 7.63—7.97 (3H, m, C-5,6,7-H), 7.82, 8.48 (each 1H, AB q, J = 5 Hz, C-3,4-H), 9.58 (1H, m, C-8-H), 5.7, 7.8 (each 1H, b, NH₂, disappeared with D₂O). The CHCl₃-acetone (3:1) eluate was recrystallized from H₂O to give 0.05 g (1%) of isoacarbostyril (XX) as colorless needles, mp 209—210°C, identical with the authentic sample (mixed mp, IR, and PMR).

Acknowledgement This work was supported in part by a grant for one of us from Grant-in-Aid for Scientific Research from the Ministry of Education, Science, and Culture. The Authors are grateful to Mr. A. Iwadoh for microanalyses and mass spectral measurements.