Studies on the Syntheses of Spiro-dienone Compounds. VI.
A New Synthesis of dl-Pronuciferine.

ZEN-IICHI HORII, CHUZO IWATA, AND YOSHIHIKO NAKASHITA

Faculty of Pharmaceutical Sciences, Osaka University

(Received June 23, 1977)

dl-Pronuciferine has been synthesized via photochemical cyclization of 8-bromo-1,2,3,4-tetrahydro-6,7-dimethoxy-1-(4-hydroxybenzyl)-2-methylisooquinoline.

Keywords—proaporphine alkaloids; dl-pronuciferine; photochemical cyclization; spiro-dienone; a new synthesis

In our previous papers, it was reported that the photolysis of 2-bromo-N-ethyl-4'-hydroxybenzanilide (I) in aqueous sodium hydroxide gave 2'-ethylspiro[cyclohexa-2,5-diene-1,1'-isoindoline]-3',4'-dione (II) directly and that the photolysis of I in the presence of sodium borohydride gave 2'-ethyl-4-hydroxyxypiperopyrrolo[2,3-d]pyrimidine-3'-one (III), which was oxidized with manganese dioxide in chloroform to give the desired spiro-dienone (II) in high yield. Now we extend this photochemical cyclization reaction to the synthesis of proaporphine alkaloids, containing the spiro-dienone system. The present paper deals with a new synthesis of dl-pronuciferine (IX), one of proaporphine alkaloids, via photochemical cyclization.

8-Bromo-1,2,3,4-tetrahydro-1-(4-hydroxybenzyl)-2-methyl-6,7-dimethoxyisquinoline (VII) was prepared as follows. Fusion of 3-bromo-4,5-dimethoxyphenethylamine with methyl p-hydroxyphenylacetate in the presence of pyridine at 180°C for 3 hr gave the amide (IV) in 70% yield. The amide (IV) was converted into the ester (V) by condensation with ethyl chloroformate in pyridine in 90% yield. Bishler-Napieralski reaction of V with a mixture of phosphorus oxychloride and phosphorous pentoxide in benzene, followed by reductive sodium borohydride in methanol, gave the crude tetrahydroisquinoline (VI). Treatment of VI with 37% formalin solution, followed by reduction with sodium borohydride, gave the desired starting material (VII) in 70% yield from V.

Irradiation of the N-methyltetrahydroisquinoline (VII) in aqueous sodium hydroxide in the presence of sodium borohydride with a 100 W high pressure mercury lamp until the starting material was not recognized on the thin-layer chromatography (TLC) (ca. 2 hr) gave the crude spiro-dienol (VIII) in 40% yield. The oxidation of VIII with manganese dioxide in chloroform for 15 hr at room temperature gave dl-pronuciferine (IX) in 20% yield from VII. The infrared (IR) spectrum shows the presence of a typical diene system (1660 and 1580 cm⁻¹).

3) Location: 133-1, Yamadaakami, Suita, Osaka.
8) H. Salkowski, Ber., 22, 2137 (1889).
9) The structure of VII was confirmed by the following data: Catalytic hydrogenation of VII with Raney Ni in potassium hydroxide-methanol gave 1,2,3,4-tetrahydro-6,7-dimethoxy-1-(4-hydroxybenzyl)-2-methylisquinoline whose NMR spectrum showed a band at 5.97 (singlet) due to a C₈-H.
1620 cm⁻¹). The ultraviolet (UV) spectrum shows two absorption bands at 230 and 280 nm due to a dienone system. This product (IX) was identical with the natural product.

![Chemical structure](image)

Chart 4

Experimental

All melting points are uncorrected. Spectra were recorded as follows: nuclear magnetic resonance (NMR) on a Hitachi R-20 (60 MHz) spectrometer, using tetramethylsilane as the internal reference; IR on a Hitachi EPI-G3 spectrometer; UV on a Hitachi 124 spectrometer; mass on a Hitachi RMU-60 spectrometer. Eikoshia PH-100 from Eikoshia Co., Osaka, was used as light source for the photoreaction.

N-(3-Bromo-4,5-dimethoxyphenethyl)-2-(4-hydroxyphenyl)acetamide (IV)—A mixture of 4.0 g of 3-bromo-4,5-dimethoxyphenethylamine, 6.0 g of methyl p-hydroxyphenylacetate and 0.5 g of pyridine was heated for 3 hr at 180°. The mixture was diluted with CHCl₃, and the solution was washed with 3% HCl, saturated brine, dried over anhydrous Na₂SO₄ and evaporated. The crude product was purified by chromatography on silica gel (Mallincrodt) with CHCl₃. Recrystallization of the product from acetone-ether gave 7.0 g (70%) of IV as colorless crystals, mp 123—124°. IR ν max cm⁻¹: 3600 (OH), 3400 (NH), 1650 (CONH). Anal. Calcd. for C₁₃H₁₈BrNO₄: C, 54.83; H, 5.11; N, 3.53. Found: C, 54.57; H, 5.04; N, 3.44.

N-(3-Bromo-4,5-dimethoxyphenethyl)-2-(4-ethoxycarbonylphenyl)acetamide (V)—To an ice-H₂O cooling solution of 1.0 g of IV in 5.0 ml of pyridine was added 1.5 ml of ethyl chloroformate with stirring and the mixture was warmed at 60° for 2 hr. After cooling, the mixture was diluted with CHCl₃ and the solution was washed with 3% HCl, saturated brine and dried over anhydrous Na₂SO₄. Evaporation of the solvent gave a colorless solid, which was recrystallized from ether to yield 1.0 g (80%) of V as colorless crystals, mp 93—94°. IR ν max cm⁻¹: 3400 (NH), 1750 (CO), 1655 (CONH). Anal. Calcd. for C₂₃H₂₄BrNO₄: C, 54.08; H, 5.18; N, 3.00. Found: C, 54.27; H, 5.27; N, 2.87.

8-Bromo-1,2,3,4-tetrahydro-6,7-dimethoxy-1-(4-hydroxybenzyl)-2-methyisoquinoline (VII)—A mixture of 1.0 g of V, 5.0 g of phosphorous pentoxide, 10 ml of phosphorous oxychloride and 25 ml of benzene was refluxed for 3 hr. After the solvent was decanted, the residue was washed with benzene and poured into ice-H₂O gradually. The resulting mixture was basified with dil. NH₄OH and extracted with CHCl₃. The CHCl₃ extract was washed with saturated brine and dried over anhydrous Na₂SO₄. After the solvent was evaporated under reduced pressure, the residue [1.0 g, IR ν max cm⁻¹: 1750 (CO), 1670 (C=N)] was dissolved in 50 ml of MeOH. To this stirred solution was added 2.5 g of sodium borohydride in small portions under ice-H₂O cooling. The reaction mixture was stirred for 3 hr at room temperature, poured into 120 ml of ether and extracted with 3% HCl. The HCl extract was basified with dil. NH₄OH and extracted with CHCl₃. The CHCl₃ extract was washed with saturated brine, dried over anhydrous Na₂SO₄ and evaporated to give 750 mg of VII. This crude (VI) was dissolved in a solution of 2.0 ml of formaline and 20 ml of MeOH and allowed to stand overnight. To this stirred mixture was added 3.0 g of sodium borohydride in small portions.
under ice-H$_2$O cooling and the mixture was stirred for 1.5 hr at room temperature. After the mixture was acidified with AcOH, then basified with dil. NH$_4$OH, the solution was extracted with CHCl$_3$. The CHCl$_3$ extract was washed with saturated brine, dried over anhydrous Na$_2$SO$_4$ and evaporated under reduced pressure to give 750 mg of crude product (VII). Chromatography of the crude VII on silica gel (Mallinckrodt) with CHCl$_3$ gave 570 mg (70%) of VII as colorless crystals, mp 169—170° (from acetone–ether). MS m/e: 393, 391 (M$^+$). IR ν_{max} cm$^{-1}$: 3600, 3350 (OH). NMR (CDCl$_3$) δ: 2.38 (3H, s, NCH$_3$), 3.85 (6H, s, 2 \times OCH$_3$), 5.41 (1H, s, C$_2$-H), 6.30—7.25 (4H, AA'BB' type, p-hydroxyphenyl). Anal. Calcd. for C$_{18}$H$_{17}$BrNO$_3$: C, 58.17; H, 5.85; N, 3.57. Found: C, 58.32; H, 5.80; N, 3.53.

dl-Pronuciferine (IX) — A water cooled mixture of 300 mg of VII, 100 mg of NaOH, 100 mg of sodium borohydride and 100 ml of H$_2$O was irradiated for 2 hr. The reaction mixture was acidified with AcOH, then basified with dil. NH$_4$OH, and extracted with CHCl$_3$. The CHCl$_3$ extract was washed with saturated brine, dried over anhydrous Na$_2$SO$_4$ and evaporated under reduced pressure to give 264 mg of crude product (VIII). Chromatography of the crude VIII on silica gel (Mallinckrodt) with CHCl$_3$ gave 100 mg (40%) of VIII as brown solid, that darkened in an air atmosphere. MS m/e: 315 (M$^+$). IR ν_{max} cm$^{-1}$: 3400 (OH). This product was used in the next step without further purification. A mixture of 100 mg of VIII, 2.0 g of manganese dioxide and 10 ml of CHCl$_3$ was stirred for 10 hr at room temperature. The reaction mixture was filtered and the residue was washed with CHCl$_3$ repeatedly. The filtrate and washings were combined and condensed under reduced pressure. The residue was purified by preparative TLC on silica gel (Merck, GF$_254$) with CHCl$_3$ to give 48 mg (20% yield from VII) of dl-pronuciferine as a colorless oil. MS m/e: 313 (M$^+$), 282, 268. IR ν_{max} cm$^{-1}$: 1660 (CO), 1620 (C=C). UV λ_{max} nm (log ϵ): 230 (4.35), 280 (3.73). NMR (CDCl$_3$) δ: 2.44 (3H, s, NCH$_3$), 3.59 and 3.80 (6H, s, 2 \times OCH$_3$), 6.20—6.45 and 6.80—6.90 (4H, AA'BB' type, dieneone), 6.67 (1H, s, C$_2$-H). The piclorolates of IX was recrystallized from acetone–ether to give yellow crystals, mp 224—225° (dec.). Anal. Calcd. for C$_{18}$H$_{17}$N$_2$O$_3$: C, 60.51; H, 5.08; Found: C, 60.04; H, 5.03.

Acknowledgement We thank Professor J. Kunimoto of Mukogawa Women's University and Dr. M. Kozuka of Kyoto College of Pharmacy for providing the IR and NMR spectral data of natural pronuciferine respectively.