Total Synthesis of dl-Chamaeacynone, a Termitecidal Norsesquiterpene1)

TAKASHI HARAYAMA, HIDETOSA CHO, and YASUO INUBUSHI

Faculty of Pharmaceutical Sciences, Kyoto University2)

(Received September 19, 1977)

The total synthesis of dl-chamaeacynone (1), which has termitecidal activity, has been accomplished. The key compound (30a), which has the same four chiral centers as chamaeacynone (1), was obtained in a single step by taking advantage of the Diels–Alder reaction of 5-ethyl-2-methylcyclohex-2-en-1-one (3) with 1-methoxy-3-trimethylsiloxy-1,3-pentadiene (4). The stereostructure of the major adduct of the Diels–Alder reaction was determined to be the formula (30a) by INDO experiment. The compound (30a) was converted in four steps into dl-chamaeacynone. The preliminary examinations of the Diels–Alder reaction of trans-1-methoxy-3-trimethylsiloxy-1,3-butadiene (2) with l-carvone and the compound (3) were also carried out, respectively.

Keywords—Diels–Alder reaction; dl-chamaeacynone; termitecidal activity; 5-ethyl-2-methylcyclohex-2-en-1-one; 1-methoxy-3-trimethylsiloxy-1,3-pentadiene; stereochemistry; INDO experiment; conformational analysis

Chamaeacynone was isolated from an essential oil of Chamaeyparis formosensis Matsum. (Cupressaceae) and its structure (1) possessing a nonsteroidal cis-decalin conformation was established,3) and then this norsesquiterpene has become of interest because of its termitecidal activity.4) A formal synthesis of chamaeacynone starting from a-santonin has been established by Nozoe, et al.5) in 1967 and the present study is undertaken for the total synthesis of dl-chamaeacynone.

In previous papers, we reported that the Diels–Alder addition of butadiene to 5-alkyl or 2,5-dialkyl-cyclohex-2-en-1-ones such as 5-methyl-cyclohex-2-en-1-one,6) 2,5-dimethyl-cyclohex-2-en-1-one,7) and l-carvone,7) in the presence of a Lewis acid took place stereoselectively from the opposite side to the C6-alkyl substituent of the dienophile. It was also suggested that this type of reaction may be useful for the synthesis of some eudesmane type sesquiterpenes and some alkaloids.7) The instances of synthesis using this type of reaction are now found in the formal synthesis of β-eudesmol by the present authors7) and total synthesis of luciduline, a lycopodium alkaloid, by Oppolzer, et al.8)

On the other hand, the Diels–Alder reaction in which the functionalized dienes are used, has become of interest in recent years. Using a novel diene, trans-1-methoxy-3-trimethylsiloxy-1,3-butadiene (2) developed by Danishefsky,9) the compounds containing the 6-carbonyl-α,β-unsaturated ketone moiety were effectively synthesized.10)

We presumed that all four chiral centers in the chamaeacynone molecule are constructed in a single step by taking advantage of the Diels–Alder reaction of the dienophile (3) with a

2) Location: Yoshida-Shimoadachi-cho, Sakyo-ku, Kyoto.
4) I. Saeki, M. Sumimoto, and T. Kondo, Holzforschung, 27, 93 (1973); T. Kondo, Japan Kokai, 7392, 525 (1973) [C.A., 81, 59351r (1974)].
new diene, 1-methoxy-3-trimethylsiloxy-1,3-pentadiene (4). On the basis of this assumption, total synthesis of \(dL\)-chamaecynone has now been achieved and details of experiments of this synthesis are reported in this paper.

![Chart 1](image)

As a preliminary experiment, the stereochemistry of the Diels–Alder adduct of \(trans\)-1-methoxy-3-trimethylsiloxy-1,3-butadiene (2)\(^9\) with \(l\)-carvone was examined with the intention of confirming whether addition of the 1,3-dioxgenated diene (2) took place from the opposite side to the \(C_\alpha\) isopropenyl substituent of \(l\)-carvone as that of butadiene,\(^6,7\) or from the same side.

The Diels–Alder reaction of the diene (2) with \(l\)-carvone in anhyd. xylene was performed in a sealed tube at 190° for 22 hr or at 145° for 8 days. Hydrolysis of the product with aq. HCl–THF provided two kinds of adducts, 5a and 5b, in 26% and 14% yields, respectively. The major adduct (5a) was then transformed to the ketone (8) of the established stereostructure. Thus, the compound (5a) was hydrogenated over PtO\(_2\) to give the diketone (6) which was reacted with 1.4 mol eq. ethanedithiol and 1.1 mol eq. of BF\(_3\)-ether to provide selectively the monothioketal (7) in 89% yield. Reduction of 7 with Raney nickel W-2 furnished the ketone (8), a sample of which was identical with an authentic sample.\(^7\)

This result indicates that the configurations of three chiral centers of 5a are the same as those of 8. In the nuclear magnetic resonance (NMR) spectrum of 5a, the signal due to \(C_\gamma-H\) appeared as a doublet (\(\delta 6.77, 1H, d, J=10\) Hz) and no W letter long-range coupling of the \(C_\gamma-H\) signal [refer to the \(C_\gamma-H\) signal of the compound (5b) (\textit{vide infra})] was observed, indicating the double bond located at \(C_1-C_2\) and the steroidal conformation of 5a. Consequently, the structure of the major product is shown by the formula (5a) in which the stereochemical relationship between the angular methyl and the \(C_\gamma\)-alkyl (isopropenyl group) is \textit{cis} as that in chamaecynone.

Next, the stereochemistry of 5b was examined. Thus, the minor product (5b) was hydrogenated over PtO\(_2\) to give quantitatively the diketone (9). Since the thioketalization of 9 gave an inseparable mixture in contrast with the compound (6), the thioketalization of the compound (5b) itself was tried. Separation of the product gave the monothioketal (10; \(r_{\text{cm}^{-1}}=1708\) cm\(^{-1}\)) and the dithioketal (11) in 27% and 10% yields, respectively, together with the recovered material in 23% yield. Reduction of 10 with Raney nickel, followed by catalytic hydrogenation, provided the ketone (12) in 34% yield, a sample of which was identified with an authentic sample.\(^7\) Consequently, the configurations of three chiral centers of 5b are the same as those of 12 in which the stereochemical relationship between the angular methyl group and the \(C_\gamma\)-isopropyl group is \textit{trans}. The position of the double bond estimated from the fact that the Diels–Alder reaction using the 1,3-dioxgenated diene (2) proceeds regio-specifically to give the compound containing the \(\delta\)-carbonyl-\(\alpha,\beta\)-unsaturated ketone moiety\(^5,10\) after hydrolysis of the adduct. Moreover, the W letter long-range coupling was observed on
the signal due to the C_1-H (δ 6.47, 1H, d, J=10, 2 Hz) in the NMR spectrum of 5b, suggesting the nonsteroidal conformation of 5b. Consequently, the structure of the minor product is shown by the formula (5b) in which the stereochemical relationship between the angular methyl group and the isopropenyl group is trans.

Next, selective reduction of the C_9 carbonyl group of 5a was examined because a similar selective reduction is required for the chamaeconone synthesis. Thioalkalization of 5a gave the dithioketal (13) and the monothioketal (14; $\nu_{C=O}$ 1700 cm$^{-1}$) in 4% and 75% yields, respectively. Treatment of 14 with 3-TsNHNH$_2$ provided the hydrazone, which without purification was reduced with an excess of NaBH$_4$. The reduction product, without separation, in aq. 99% acetone was treated with CuCl$_2$·2H$_2$O–CuO and the product was purified by the preparative thin-layer chromatography (TLC) to furnish the desired α,β-unsaturated ketone (15) and the compound (16) in 34% and 8% yields, respectively. The formation mechanism of the latter was uncertain and no further investigation was made. From the results described above, it is obvious that addition of trans-1-methoxy-3-trimethylsiloxy-1,3-butadiene (2) to l-carvone took place predominantly from the opposite side of the C_9 isopropenyl group of the latter.

\[\begin{align*}
5a & \quad \equiv \quad 5b \\
6: R=O & \\
7: R=S & \\
8: R=H_2 & \\
10: R_1=\cdots S, \quad R_2=O & \\
11: R_1=R_2=\cdots S & \\
13: R_1=R_2=\cdots S & \\
14: R_1=\cdots S, \quad R_2=0 & \\
15 & \\
16 & \\
\end{align*} \]

Chart 2

The influence of addition of a Lewis acid on the yield and selectivity of addition direction to the dienophile in the Diels–Alder reaction was studied. In the previous paper,7 it was reported that yield and selectivity of addition direction are improved by addition of a Lewis

acid compared with those in heating method without catalyst. In the present case, the lower yield and higher selectivity of addition direction were observed and the lower yield should be attributed to the susceptibility of the diene (2) to a Lewis acid.

<table>
<thead>
<tr>
<th>Reaction condition</th>
<th>5a: 5b</th>
<th>Total yield</th>
</tr>
</thead>
<tbody>
<tr>
<td>Heating method</td>
<td>25 : 14</td>
<td>39%</td>
</tr>
<tr>
<td>0.3 eq. ZnCl₂ at r.t.</td>
<td>75 : 12</td>
<td>6%</td>
</tr>
<tr>
<td>0.3 eq. AlCl₃ at r.t.</td>
<td>5a only</td>
<td>2%</td>
</tr>
</tbody>
</table>

The dienophile, 5-ethyl-2-methylcyclohex-2-en-1-one (3) required for the chamaecynone synthesis, was synthesized in a high yield through the following route. It is known that the direct introduction of an ethynyl group at the β position of the α,β-unsaturated ketone moiety with organocopper reagent is impractical. The procedure developed by Corey¹²) using the organotin compound is inadequate for a large quantity of material because of expensiveness of the reagent. Then, the indirect introduction procedure was adopted. Reaction of 6-methylcyclohex-2-en-1-one¹³) with vinylmagnesium bromide-CuI gave the compound (17: trans/cis =1) in 80% yield. Since selective bromination of the vinyl group of 17 was unfruitful, the compound (17) was reduced with NaBH₄ to lead to the alcohol which was brominated to give the dibromo-alcohol in 62% yield. Dehydrobromination of the bromide with NaN₃ in liq. NH₃ gave 5-ethyl-2-methylcyclohexan-1-ol (18a) in 83% yield. When a series of reactions described above was applied to the acetate (19) and the product (18b) was hydrolyzed, the yield of 18a was improved. Jones' oxidation of 18a gave the compound (20) which was subjected successively to bromination and dehydrobromination to provide the desired 5-ethynyl-2-methylcyclohex-2-en-1-one (3) in 70% yield.

![Reaction Structures](image1)

![Chart 3](image2)

The Diels–Alder reaction of the dienophile (3) with trans-1-methoxy-3-trimethylsiloxy-1,3-butadiene (2) was carried out by heating at 180—200° for 60 hr in anhyd. xylene to give two kinds of adducts, (21a) and (21b), in 30% and 3% yields, respectively. The stereotrastructures of these adducts were inferred from the analogy with the Diels–Alder adducts obtained from the diene (2) and l-carpone (vide ante). Selective thioketalization of the major product (21a) furnished the monothioketal (22) in 91% yield. Reduction of the tosylhydrazone derived from 22 with a large excess of NaBH₄ gave the compound (23) in only 10% yield. Reduction of the tosylhydrazone with NaBH₃CN-TsOH–sulfolane–DMF¹⁴ provided the compound (23) together with the compound (24) in 22% and 14% yields, respectively. Treatment of 23 with 1.6 mol eq. of Ti(NO₃)₃·3H₂O¹⁵ gave the α,β-unsaturated ketone (25) in 60% yield. Then, methylation at C₄ of 25 with LDA–HMPA/Mel–THF was tried but no satisfactory result was obtained.

An attempt was then made to obtain the Diels–Alder adduct possessing a methyl group at C₄ by the reaction of the dienophile (3) with a new diene (4).

A new diene (4) was synthesized as follows. The Friedel–Crafts reaction of vinyl bromide and propionyl chloride in the presence of AlCl₃ gave a mixture consisting of the compounds, (26) and (27), which without separation, was treated with NaOMe–MeOH to give 1,1-dimethoxypentan-3-one (28)¹⁶ in 35% overall yield from vinyl bromide. A suspension of NaOMe in the compound (28) was heated at 160—170° to give 1-methoxy-pent-1-en-3-one (29)¹⁷ in 73% yield. Finally, trimethylsilylation of 29 with Me₃SiCl–ZnCl₂–Et₃N⁹ gave the desired 1-methoxy-3-trimethylsiloxy-1,3-pentadiene (4) in 70% yield. From the NMR spectrum of 4, it was estimated that this product is a mixture consisting of the E and Z isomer shown by the formula (4).

The Diels–Alder reaction of the dienophile (3) with the diene (4) in anhyd. xylene was carried out at 190—210° for 3 days under argon atmosphere in a sealed tube. Hydrolysis of the product with 2N HCl–THF, followed by chromatographic separation, gave the adducts (30a), (30b), and (30c) in 16%, 6%, and 4% yields, respectively. In addition, the diene dimer

(31) which may result from the Diels-Alder reaction of the diene (4) with its hydrolyzed compound (29), was isolated.

The stereostructure of the major product (30a) was determined by its NMR spectral examinations. In the INDOER experiment of 30a, the signal due to C_1-H (δ 6.32, 1H, dd, J=10, 2 Hz) was observed by monitoring the signal due to C_1-H (δ 6.32, 1H, dd, J=10, 2 Hz). The W letter long-range coupling (J=2 Hz) between C_1-H and C_5-H suggests the nonstereoidal conformation of 30a [see formula (30a)]. Moreover, the signal due to C_4-H was observed at δ 2.99 (1H, double q, J=7, 4.5 Hz) by monitoring the signal of the secondary methyl group. In the NOE measurement of 30a, the increment (10%) was observed at the signal due to C_4-H upon irradiation at the signal of the angular methyl group (δ 1.46, 3H, s). This observation indicates the α configuration of the secondary methyl group at C_4. Moreover, the peak was observed at δ 3.22 (C_7-H, 1H, m) by monitoring the signal of an ethynyl proton at δ 2.21 (1H, d, J=2.5 Hz) and the peaks were observed at δ 2.73 (C_5-H), δ 1.99 (C_6-H_9, 1H, m) and δ 3.22 (C_7-H) by monitoring the signal due to C_8-H_9, at δ 1.63. On the other hand, no peak except the C_7-H signal was observed by monitoring the signal due to the C_8 methylene protons at δ 2.58 (2H, m). These observations allowed the identification of the coupled protons. Since the C_8-H_9 signal overlapped in part with the signal of the angular methyl protons, the coupling pattern of the former signal at δ 1.63 (C_8-H_9, octet, J=14, 13 and 4 Hz) was identified by taking advantage of the solvent effect (in CDCl_3: C_6D_6=2:1) which permitted the up-field shift of the signal concerned. Because the geminal coupling (C_8-H_9, C_9-H_18) and the diaxial coupling (C_8-H_9, C_9-H_18) have the values of 13 Hz and 14 Hz or vice versa, the coupling constant value of 4 Hz is allotted to the coupling between C_9-H_18 and C_7-H_9. This suggests the β axial conformation of the ethynyl group at C_7. The stereostructure of the major product is now shown by the formula (30a) and the correctness of these assignments was ultimately shown by identification of the final synthetic product with natural chamaeaynone.

The W letter long-range coupling between C_1-H (δ 6.33, 1H, dd, J=10 and 2 Hz) and C_5-H was observed in the NMR spectrum of the minor product (30b), suggesting the nonstereoidal conformation of 30b. In the NOE experiment, the increment (15%) of the integrated intensity of the C_4-H signal (δ 2.96, 1H, double q, J=7 and 3.5 Hz) was observed by irradiation at the signal of the angular methyl protons (δ 1.43), indicating the α configuration of the secondary methyl group at C_4. Consequently, the minor product (30b) is a stereoisomer of 30a with respect to the configuration of the ethynyl group and is shown by the formula (30b).

In the NMR spectrum of the other minor product (30c), no W letter long-range coupling between C_1-H (δ 6.77, 1H, d, J=10 Hz) and C_5-H was observed and this suggests its stereoidal conformation. The equilibrium experiment of 30c with 'BuOK·BuOH at room temperature for 2 hr causes epimerization at the C_6 position to afford a mixture consisting of 30a and 30c in a 2/1 ratio. The stereostructure of 30c is shown by the formula (30c) in which the ethynyl group and the secondary methyl group are both β-equatorial. Consequently, the major product (30a) serves for the chamaeaynone synthesis.

Before the chamaeaynone synthesis is put forward from the major product (30a), selective reduction of the C_6 carbonyl function to the methylene group was examined using the minor product (30b) as a preliminary experiment. Reduction of 30b with 0.34 mol eq. of NaBH_4 in iso-ProOH·MeOH gave selectively the compound (32) in 94% yield. The NMR spectrum of 32 revealed the signal (δ 3.43, 1H, dd, J=12 and 4 Hz) due to a proton geminal to the hydroxyl group and the diaxial coupling constant value (J=12 Hz) indicates the α-equatorial conformation of the newly generated hydroxyl group. Mesylation of 32 furnished the mesylate (33) in 94% yield and reduction of 33 with LiAlH_4 followed by MnO_2 oxidation regenerated the hydroxyl compound (32) and the desired compound possessing the methylene group at C_6 was not detected. Then, tosylation of 32 gave the tosylate (34) which was reduced with NaBH_4 to afford the allyl alcohol. Treatment of the allyl alcohol with Super Hydride
(LiBHEt$_3$-THF),\(^{18}\) however, furnished no desired compound and treatment of 33 with Zn–NaI–glyme–HMPA\(^{19}\) also gave no satisfactory result.

On the other hand, reduction of the major product (30a) with 0.63 mol eq. of NaBH$_4$ afforded three kinds of alcohols, (35a), (35b), and (35c) in 45\%, 27\%, and 12\% yields, respectively, in contrast to the compound (30b). The stereostructures of these alcohols were inferred from their NMR spectral investigations. In reduction of 30b, the hydride attack took place from the convex face to give selectively the α alcohol, whereas reduction of the major product (30a) gave predominantly the β alcohol which was formed by the hydride attack from the concave face. This result was rationalized by taking account of the steric hindrance at the C$_9$ carbonyl group by the axial ethyl group. Then, it was presumed that benzylation of the diol, which is obtained by reduction of 30a with NaBH$_4$ or LiAlH$_4$, may cause the selective benzylation of the allylic hydroxyl group. From this assumption, the reduction product of 30a with LiAlH$_4$ was benzyolated with 1.5 mol eq. of benzyol chloride to afford mainly the monobenzoate (36). Jones’ oxidation of 36 gave the monoketone (37), ν_{max} 1708 cm$^{-1}$, in 82\% yield, which was hydrolyzed with alkali to give the allyl alcohol. Reduction of the tosylhydrazine derived from the allyl alcohol with a large excess of NaBH$_4$, however, gave no desired reduction product.

Finally, the chamaeclonone synthesis was performed through the following route from the major product (30a). Thioketalization of 30a with 4.9 mol eq. ethanedithiol and 2.9 mol eq. BF$_3$-ether provided the monothioketal (38) and the dithioketal (39) in 57\% and 13\% yields, respectively. Treatment of 38 with 1.6 mol eq. ϕ-TsNHNH$_2$ gave quantitatively the

tosylhydrazone. In contrast to the tosylhydrazone derived from 14, reduction of the tosylhydrazone of 38 with a large excess of NaBH₄ gave mainly the olefinic compound (40) which was formed by the elimination of the tosylhydrazino group. Next, reduction of the tosylhydrazone from 38 with NaBH₄CN–TsOH–DMF–sulfolane¹⁴ was tried. In this case, the olefinic compound (40) was also obtained together with the expected reduction product (vide infra). The formation of the olefinic compound (40) in the case of the hydrazone from 38 in contrast to those from 14 and 22 may be attributed to the different conformation among these compounds. Thus, the hydrazones of 14 and 22, have the steroidal conformation, whereas the hydrazone of 38 has the nonsteroidal conformation in which the hydride attack at the C₈ position is hindered by the β-axial ethynyl group to cause the unusual elimination of the tosylhydrazino group.

The reduction product of the tosylhydrazone from 38 with NaBH₄CN was separated by the preparative TLC to isolate the desired compound (41) and the olefinic compound (40) in 10% and 7% yields, respectively. Treatment of 41 with Ti(NO₃)₃·3H₂O¹⁵ gave dl-chamaeacynone (1) in 78% yield. A sample of synthetic dl-chamaeacynone was identified with an authentic sample of natural chamaeacynone by comparison of their IR (in CCl₄) and NMR spectra.

Experimental

All melting points were taken on a microscopic hot stage (Yanagimoto Melting Point Apparatus) and uncorrected. All NMR spectra were obtained in CDCl₃ solution with tetramethylsilane as an internal standard on a Varian A-60 spectrometer, and IR spectra were measured for a solution in CHCl₃ with a Hitachi EPI spectrometer unless otherwise stated. Low-resolution mass spectra and high-resolution mass spectra were taken with a Hitachi RMU-6C spectrometer with a heated direct inlet system and a JEOL JMS-01SG-2 spectrometer, respectively. Optical rotations were observed with a Rex Photoelectric Polarimeter NEP-2. All extracts were dried over anhyd. MgSO₄, and column chromatography was performed on silica gel (Mallinckrodt, Silicic Acid 100 mesh) or on alumina (Merck, neutral Aluminiumoxide). The preparative TLC was performed on silica gel (Merck, Silicic Acid PF-254 containing CaSO₄) or on alumina (Merck, Aluminiumoxide PF-SM).

The Diels–Alder Adducts, (5a) and (5b), by the Heating Method—To a solution of 14 g of l-carvone in 10 ml of anhyd. xylene was added 18 g of trans-1-methoxy-3-trimethylsiloxy-1,3-butenadiene (2) at 0° in a sealed tube. The mixture was heated at 190° for 22 hr or at 145° for 8 days under the argon atmosphere. The reaction mixture was acidified with 2 N HCl–THF solution (1:6) and stirred at 0° for 30 min. The mixture was extracted with CHCl₃, and the extract was dried and evaporated under reduced pressure to leave 18 g of the residue. The residue was chromatographed on SiO₂ and elution of the column with 5% ether in n-hexane gave 7 g of the recovered l-carvone. Continuous elution with 20% ether in n-hexane afforded 1.6 g of the Diels–Alder adduct (5b) and changing the eluting solvent to 25% ether in n-hexane provided 3.9 g of the adduct (5a). Continuous elution with 30% ether in n-hexane yielded 3.7 g of the oily compound. A solution of this oily compound in 100 ml of 2 N HCl in THF (1:6) was refluxed for 40 min and the reaction mixture was extracted with ether. The extract was washed with a 3% NaHCO₃ solution, dried and evaporated under reduced pressure to leave 3 g of the residue. The residue was chromatographed on SiO₂ in a similar manner as above to yield another crops of 5b (1.18 g) and 5a (1.05 g). Total yields of the adducts (5a) and (5b) were 4.95 g (25%) and 2.78 g (14%), respectively. 5a: colorless plates (ether–n-hexane), mp 62–64°, [α]D₂⁻⁻⁶.8° (c=1.0, EtOH). IR cm⁻¹: νC=O 1700, νC=O 1678, νC=O 1650, δC=CH 904. NMR δ: 1.49 (3H, s, angular CH₃), 1.79 (3H, m, allyl CH₃), 4.75–4.85 (2H, m, terminal methylene protons), 6.04 (1H, d, J=10 Hz, olefinic proton, C₈=H), 6.75 (1H, d, J=10 Hz, olefinic proton, C₇=H). Anal. Calcd. for C₁₅H₁₈O₂: C, 77.03; H, 8.31. Found: C, 77.03; H, 8.18. 5b: colorless plates (ether–n-hexane), mp 76–78°, [α]D₂⁻⁻⁺/2.3° (c=1.0, EtOH). IR cm⁻¹: νC=O 1710, νC=O 1679, νC=O 1650, δC=CH 904. NMR δ: 1.42 (3H, s, angular CH₃), 1.71 (3H, m, allyl CH₃), 2.90 (1H, d, J=17 and 5 Hz, one of methylene protons), 4.85 (2H, m, terminal methylene protons), 6.05 (1H, d, d, J=10 and 1 Hz, olefinic proton, C₈=H), 6.47 (1H, d, d, J=10 and 2 Hz, olefinic proton, C₇=H). Anal. Calcd. for C₁₅H₁₈O₂: C, 77.03; H, 8.31. Found: C, 77.07; H, 8.54.

The Adducts (5a) and (5b) from the Reaction in the Presence of the Lewis Acid—To a solution of 10 g of l-carvone in 100 ml of anhyd. CH₂Cl₂ were added 2.6 g of anhyd. ZnCl₂ and 15 g of the diene (2). The mixture was allowed to stand at room temperature for 5 days. The usual work-up gave the residue which was chromatographed on SiO₂ to afford 750 mg of the adduct (5a) and 120 mg of the adduct (5b). To a solution of 7 g of l-carvone in 100 ml of anhyd. CH₂Cl₂ were added 2.0 g of anhyd. Al₂Cl₆ in place of ZnCl₂.
and 10 g of the diene (2). The mixture was left for 5 days at room temperature. A similar treatment as above yielded 220 mg of 5a but the compound (5b) was not detected by GLC.

Conversion of the Major Adduct (5a) to the Ketone (8)—To a solution of 327 mg of the adduct (5a) in 10 ml of abs. EtOH was added 100 mg of 10% Pd-C and the mixture was stirred under the hydrogen atmosphere. After the hydrogen uptake had ceased, catalyst was removed by filtration. The filtrate was concentrated under reduced pressure to leave 320 mg (96% yield) of the colorless oil (6). IR cm⁻¹: νC=O 1703. NMR δ: 0.92 (6H, d, J=7 Hz, CH(CH₃)₃), 1.28 (3H, s, angular CH₃), 3.27 (4H, s, −S(CH₂)₂S−). Anal. Calcd. for C₁₅H₂₅OS₂: C, 64.37; H, 8.78. Found: C, 64.08; H, 8.62. A solution of 100 mg of 7 in 10 ml of abs. EtOH was added to 5 ml (the volume of precipitates from EtOH) of Raney Ni (W-2). The mixture was refluxed for 5 hr and extracted with ether. The extract was dried and evaporated under reduced pressure to leave the residue. The residue was chromatographed on SiO₂ and elution of the column with n-hexane provided 110 mg of the ketone (8) in an 83% yield, [α]D²⁺ +86.5° (c=0.94, EtOH). The compound (8) was identified with an authentic sample, [α]D²⁺ +57.1° (c=1.0, EtOH).

The Ketone (9)—To a solution of 275 mg of the minor adduct (5b) in 15 ml of abs. EtOH was added 150 mg of 10% Pd-C and the mixture was stirred under the hydrogen atmosphere. The usual work-up afforded 275 mg of the diketone (9) as colorless flakes (n-hexane), mp 96–98°. IR cm⁻¹: νC=O 1702. NMR δ: 0.89 (6H, d, J=6 Hz, CH(CH₃)₃), 1.41 (3H, s, angular CH₃), 2.79 (1H, d.d, J=15 and 6 Hz, one of methylene protons). Anal. Calcd. for C₁₅H₂₅O₂: C, 75.63; H, 9.97. Found: C, 75.63; H, 10.26.

Conversion of the Minor Adduct (5b) to the Ketone (12) via the Compound (10)—To a solution of 440 mg of the minor adduct (5b) in 6 ml of anhyd. MeOH were added dropwise 200 mg of ethanethiol and 300 mg of BF₃·ether. The mixture was left standing at 0° for 40 hr. The usual work-up gave the residue which was chromatographed on SiO₂. Elution of the column with a mixture of n-hexane and ether (1:1) afforded 230 mg of the oily compound. Continuous elution with ether gave 180 mg of the oily compound. The separation of the former oil by the preparative TLC on SiO₂ gave 73 mg of the compound (11) in a 10% yield from a less polar zone and 140 mg of the monothioketal (10) from a more polar zone. The latter oil was similarly separated to give 20 mg of 10 and 100 mg of the starting material. The total yield of 10 was 27%. 10: colorless plates (n-hexane), mp 89–94°. IR cm⁻¹: νC=O 1646, δC=O 899. NMR δ: 1.23 (3H, s, angular CH₃), 1.75 (3H, m, allyl CH₂), 3.28–3.45 (4H, m, −S(CH₂)₂S−), 4.76 (2H, m, methylene protons), 5.27 (1H, d, J=10 Hz, olefinic proton), 5.89 (1H, d.d, J=10 and 1 Hz, olefinic proton). Anal. Calcd. for C₁₅H₂₅O₂: C, 65.24; H, 7.53. Found: C, 65.48; H, 7.73. 11: colorless needles (n-hexane), mp 95–96°. IR cm⁻¹: νC=O 1643, δC=O 896. NMR δ: 1.39 (3H, s, angular CH₃), 1.71 (3H, m, allyl CH₂), 3.23–3.43 (total 8H, m, −S(CH₂)₂S−), 4.70 (2H, m, methylene protons), 5.66 (2H, m, olefinic protons). Anal. Calcd. for C₁₅H₂₅O₂: C, 58.33; H, 7.07. Found: C, 58.04; H, 7.04. A solution of 252 mg of 10 in 15 ml of abs. EtOH was added to 6 ml of Raney Ni (W-2) and the mixture was refluxed for 16.5 hr. The usual work-up gave the residue which was separated by the preparative TLC to afford 42 mg of the oily compound from a less polar zone and 85 mg of the oily compound from a more polar zone. To a solution of 85 mg of the latter oil in 5 ml of abs. EtOH was added 30 mg of PtO₂·2H₂O and the mixture was stirred under the hydrogen atmosphere. The catalyst was removed by filtration and the filtrate was diluted with water and extracted with ether. The extract was dried and evaporated to leave 85 mg of the residue. The separation of the residue by the preparative TLC provided 60 mg of the colorless oil (12) in a 34% yield, [α]D²⁺ +88.8° (c=1.1, EtOH). The compound (12) was identified with an authentic sample, [α]D²⁺ +84.3° (c=0.91, EtOH).

The Ketone (15) from the Major Adduct (5a) via the Compound (14)—To a solution of 660 mg of the adduct (5a) in 10 ml of anhyd. MeOH were added dropwise 330 mg of ethanethiol and 480 mg of BF₃·ether. The mixture was left standing at 0° for 30 hr and the usual work-up gave the residue which was chromatographed on SiO₂. Elution of the column with n-hexane afforded 40 mg of the compound (13) and continuation of elution with 5–10% ether in n-hexane provided 670 mg of the compound (14) in a 75% yield. 13: colorless plates (n-hexane), mp 155–157°. IR cm⁻¹: νC=O 1643, δC=O 899. NMR δ: 1.40 (3H, s, angular CH₃), 1.75 (3H, m, allyl CH₂), 3.00–3.45 (total 8H, m, −S(CH₂)₂S−), 4.75 (2H, m, methylene protons), 5.84 (2H, br, s, olefinic protons). Anal. Calcd. for C₁₅H₂₅S₂: C, 58.33; H, 7.07. Found: C, 58.52; H, 7.12. 14: colorless needles (n-hexane), mp 103–104°. IR cm⁻¹: νC=O 1700, νC=O 1645, δC=O 899. NMR δ: 1.39 (3H, s, angular CH₃), 1.73 (3H, m, allyl CH₂), 3.27–3.42 (4H, m, −S(CH₂)₂S−), 4.79 (2H, m, methylene protons), 5.64 (1H, d, J=10 Hz, olefinic proton), 5.95 (1H, d.d, J=10 and 1 Hz, olefinic proton). Anal. Calcd. for C₁₅H₂₅O₂: C, 65.24; H, 7.53. Found: C, 64.98; H, 7.58. To a solution of 520 mg of the compound (14) in 15 ml of anhyd. MeOH was added 505 mg of p-TsNHNH₂ and the mixture was refluxed for 8.5 hr. The mixture was cooled at 0° and 10 ml of anhyd. MeOH and 2.2 g of NaBH₄ were added alternatively to the mixture in small portions. The mixture was refluxed for 20 hr and extracted with ether. The extract was washed with water, dried and evaporated to leave the residue and purification of the residue by the
preparative TLC yielded 280 mg of the oily material (58% yield). To a solution of this oil in 15 ml of 99% aqueous acetone were added 383 mg of CuCl₂·2H₂O and 362 mg of CuO. The mixture was stirred for 22 hr at room temperature and was extracted with CHCl₃. The extract was dried and evaporated to leave the residue. The separation of the residue by the preparative TLC gave 108 mg of the recovered starting material from a less polar zone and 42 mg of the crude ketone (15) from a more polar zone. A solution of the recovered material (108 mg) in 5 ml of 99% aqueous acetone was refluxed with CuCl₂·2H₂O (154 mg) and CuO (138 mg) for 8.5 hr and a similar work-up as above gave the second crop (73 mg) of the crude ketone (15). The combined first and second crops of the ketone (15) were purified by the preparative TLC on SiO₂ impregnated with AgNO₃ to provide 16 mg of the compound (16) from a less polar zone and 72 mg (20% yield from 14) of the ketone (15) from a more polar zone. 15: IR cm⁻¹: ν₁ = 1670, ν₂ = 1650 (shoulder), δCH₃ 987. NMR δ: 1.22 (3H, s, angular CH₃), 1.75 (3H, m, allyl CH₂), 4.75 (2H, m, methylene protons), 5.88 (1H, d, d, J = 10 and 1 Hz, olefinic proton, C₂-H), 6.85 (1H, d, J = 10 Hz, olefinic proton, C₁-H). MS m/e: 204 (M⁺). 16: IR cm⁻¹: ν₁ = 1670. NMR δ: 0.89 (6H, d, J = 6 Hz, CH(CH₃)₂), 1.18 (3H, s, angular CH₃), 5.85 (1H, d, d, J = 10 and 1 Hz, olefinic proton, C₂-H), 6.62 (1H, d, J = 10 Hz, olefinic proton, C₁-H). MS m/e: 206 (M⁺).

5-Vinyl-2-methylcyclohexan-1-one (17)—In a two-necked flask equipped with a dry-ice acetone reflux condenser, a mechanical stirrer, and a rubber stopper were placed a mixture of magnesium (10.5 g) and iodine (5 g) in 180 ml of anhyd. THF. The mixture was stirred for 20 min under the argon atmosphere at 0° and a solution of 51 g of freshly distilled vinyl bromide in 90 ml of THF was injected into the flask with the aid of a syringe through a rubber stopper. The reaction started with violence and the mixture was refluxed for 10 min. After stirring was continued for further 35 min at 0°, the reaction mixture was then cooled at −45° and the dry-ice condenser was removed. To this Grignard reagent was added 9.2 g of dry CuI at once and the mixture was vigorously stirred for 25 min under the argon atmosphere. To the mixture was injected a solution of 24 g of 6-methylcyclohex-2-en-1-one in 105 ml of anhyd. THF with the aid of a syringe. The dry-ice bath temperature was gradually raised from −45° to 0° during 1.5 hr and the mixture was hydrolyzed by the careful addition of an aq. saturated solution with NH₄Cl and then filtered. The filtrate was extracted with ether and the extract was washed with brine, dried and evaporated. Distillation of the residue gave 24 g (80%) of 5-vinyl-2-methylcyclohexan-1-one (17), bp 81–84°/16 mmHg, which was indicated to be an epimeric mixture of cis and trans isomers in a ratio of 1:1 by its NMR spectrum and GLC. IR cm⁻¹: ν₁ = 1705, ν₂ = 1640, δCH 950, 920. NMR δ: 1.03 and 1.06 (total 3H, each d, J = 6.5 Hz, −CH₂−CH₃), 4.80–5.00, 5.00–5.20, and 5.53–6.15 (each 1H, m, vinyl protons). MS m/e: 138 (M⁺).

5-Ethynyl-2-methylcyclohexan-1-ol (18a)—To a solution of 14.9 g of 17 in 120 ml of 99% EtOH was added 16.4 g of NaBH₄ at 0°. The mixture was stirred for 45 min at the same temperature and stirring was continued for further 2 hr at room temperature. The reaction mixture was extracted with ether and the extract was washed with water, dried and evaporated to leave 15.1 g of a mixture of the isomeric alcohols. IR cm⁻¹: νOH 3600, 3450, νCO 1642, δCH 1000, 918. NMR δ: 0.92 and 1.01 (total 3H; d, J = 7 Hz and d, J = 5 Hz, −CH₂−CH₃), 2.90–3.38 and 3.58–3.95 (total 1H, br.m, −CH=OH), 4.75–5.15 (2H, m, vinyl protons), 5.50–6.10 (1H, m, vinyl proton). MS m/e: 140 (M⁺). To a solution of 1.37 g of the alcohols in 96 ml of CHCl₃ was added dropwise a solution of 10.7 mmol of bromine in 10 ml of CHCl₃. After 10 min, the reaction mixture was diluted with water and the organic layer was separated and the aqueous layer was extracted with CHCl₃. The organic layer and the extracts were combined and dried. Evaporation of the solvent under reduced pressure gave the residue which was purified by chromatography on SiO₂ to afford 1.83 g (62%) of the dibromo-alkene. A powder of 160 mg of anhyd. FeCl₃ was added to 50 ml of liq. NH₄ at −78°. After 5 min, 262 mg of sodium was added and the mixture was stirred for 1 hr. A solution of 341 mg of the dibromo-alkene in 8 ml of anhyd. ether was then added and the mixture was stirred for further 3 hr. After evaporation of ammonia, an aq. saturated solution of NH₄Cl was added and the mixture was extracted with ether. The extract was washed with water, dried and evaporated to leave 131 mg (83%) of 5-ethynyl-2-methylcyclohexan-1-ol (18a); bp 98–99°/20 mmHg. IR cm⁻¹: νOH 3600, 3550, 3450, νCO 3330, ννCO 2125. NMR δ: 0.85–1.05 (3H, m, −CH₂−CH₃), 2.07 and 2.13 (total 1H, each d, J = 2 Hz, −CH=CH₂), 2.80–3.30 and 3.50–3.95 (total 1H, m, −CH=OH). Anal. Calcd. for C₆H₇O: C, 78.21; H, 10.21. Found: C, 77.83; H, 10.33.

The Alternative Synthesis of 18a via the Compounds (19) and (18b) from 5-Vinyl-2-methylcyclohexan-1-one (17)—To a solution of 11.7 g of the alcohol derived from 5-vinyl-2-methylcyclohexan-1-one (17) in 100 ml of anhyd. pyridine was added 100 ml of acetic anhydride. The mixture was allowed to stand for 17 hr at room temperature. The reaction mixture was acidified with an ice-cooled 5% HCl solution and was extracted with CHCl₃. The extract was washed with water, dried and evaporated to leave 15.5 g of the compound (19), bp 121–123°/22 mmHg. IR cm⁻¹: νOH 1720, νCO 1640, νCO 1255, δCH 913. NMR δ: 0.90 and 0.93 (total 3H; d, J = 6 Hz and d, J = 7 Hz, −CH₂−CH₃), 2.04 (3H, br.s, OCOCH₃), 4.78–5.15 (2H, m, vinyl protons), 5.50–6.10 (1H, m, vinyl proton). Anal. Calcd. for C₇H₁₅O₂: C, 72.49; H, 9.96. Found: C, 20) Vinyl bromide was washed with an ice-cooled aq. saturated solution of Na₂SO₄ twice, with an ice-cooled aq. saturated solution of NaHCO₃ once, dried over K₂CO₃ and distilled.
72.72; H, 10.09. To a solution of 15.5 g of the compound (19) in 200 ml of CHCl₃ was added dropwise a solution of 94 ml (94 mmol) of bromine in 85 ml of CHCl₃. After 10 min, the usual work-up gave 28.8 g of the crude dibromo-acetate, IR cm⁻¹: νC=O 1725.

A powder of 3 g of anhyd FeCl₃ was added to 800 ml of liq. NH₃ at −78°. After 20 min, 23 g of sodium was added by portions and the mixture was stirred for 1 hr. A solution of 28.8 g of the crude dibromo-acetate in 200 ml of anhyd ether was added dropwise and the mixture was stirred for 2 hr at −78°. The usual work-up provided 12.8 g (85%) of the compound (18b). IR cm⁻¹: νC=O 3296, νC≡N 2100, νC=N 1720, νC-O 1255. To a solution of 12.8 g of 18b in 200 ml of MeOH was added an aqueous solution (100 ml) of 11.6 g of KOH. The mixture was refluxed for 30 min and extracted with ether. The extract was washed with water, dried and evaporated to leave 9.0 g of 5-ethylnyl-2-methylcyclohexan-1-one (18a) in overall 78% yield from 17.

5-Ethynyl-2-methylcyclohexan-1-one (20) — To a solution of 3.55 g of 18a in 150 ml of acetone was added dropwise 8.74 ml (23.6 mmol) of Jones’ reagent at 0° under stirring and the mixture was stirred for 10 min. The reaction mixture was diluted with MeOH and extracted with CHCl₃. The extract was washed with water, dried and evaporated to give 3.5 g of 5-ethynyl-2-methylcyclohexan-1-one (20), bp 87–90°/12 mmHg. IR cm⁻¹: νC=CH 3330, νC≡N 2100, νC=N 1710. NMR δ: 1.02 and 1.06 (total 3H, each d, δ=6.5 Hz, −CH₂−CH₃), 2.18 (1H, d, δ=2 Hz, −C≡CH). Anal. Calcd. for C₆H₈O: C, 79.37; H, 8.88. Found: C, 79.24; H, 8.87.

5-Ethynyl-2-methylcyclohex-2-en-1-one (3) — To a solution of 7 g of 20 in 100 ml of CHCl₃ was added dropwise 66 ml (66 mmol) of bromine in CHCl₃ at 30°. After a reddish-brown color had faded, the usual work-up gave 11 g of the residue. IR cm⁻¹: νC≡CCH 3130, νC≡N 2120, νC=N 1718. To a solution of 11 g of the residue in 200 ml of DMF were added 18.3 g of LiBr·H₂O and 12.9 g of Li₂CO₃ under stirring. The mixture was heated at 120–130° for 4 hr with stirring under the argon atmosphere. After cooling, the reaction mixture was acidified with an ice-cooled 5% HCl solution and extracted with ether. The extract was washed with 3% NaOH solution, with brine, dried and evaporated. Purification of the residue by chromatography on Al₂O₃ to give 4.8 g of 5-ethynyl-2-methylcyclohex-2-en-1-one (3) in 70% yield, colorless plates, mp 45° from n-hexane-ether. IR cm⁻¹: νC≡CCH 3330, νC≡N 2140, νC=N 1675. NMR δ: 1.72–1.85 (3H, m, −C≡CH₃), 2.15 (1H, d, δ=2 Hz, −C≡CH), 6.70 (1H, m, W₁/₂=9 Hz). Anal. Calcd. for C₆H₁₀O: C, 80.56; H, 7.51. Found: C, 80.44; H, 7.81.

The Diels–Alder Adducts (21a) and (21b) — To a solution of 4.7 g of 5-ethynyl-2-methylcyclohex-2-en-1-one (3) in 12 ml of anhyd xylene was added 16.1 g of trans-1-methoxy-3-methylisoxazole-1,3,5-trithiadie (2). The mixture was heated at 180–200° for 60 hr in a sealed tube. The solvent was removed under reduced pressure to leave the residue which was chromatographed on SiO₂. Elution of the column with CHCl₃ gave 2.75 g of the crude oil from an earlier fraction. Continuous elution afforded 1.63 g of the crystalline major adduct (21a). Recrystallization of the crude oil furnished 0.223 g (3%) of the minor adduct (21b) from the earlier eluate and the another crop of the major adduct (21a; 0.472 g) from the later elute. The major adduct was obtained in 30% total yield. 21a: colorless prisms mp 92–94° from ether. IR cm⁻¹: νC≡CCH 3300, νC≡N 2120, νC=N 1670. NMR δ: 1.48 (3H, s, CH₃), 2.26 (1H, d, δ=2 Hz, −C≡CH), 6.03 (1H, d, δ=10.5 Hz, C₂=H), 6.60 (1H, d, d, δ=10.5 and 1 Hz, C₂−H). Anal. Calcd. for C₆H₁₂O₂: C, 77.20; H, 6.85. Found: C, 76.92; H, 7.15. 21b: IR cm⁻¹: νC≡CCH 3340, νC≡N 2180, νC=N 1678. NMR δ: 1.40 (3H, s, CH₃), 2.20 (1H, d, δ=2 Hz, −C≡CH), 6.07 (1H, d, δ=10.5 Hz, C₂=H), 6.49 (1H, d, δ=10.5 and 1.5 Hz, C₂−H). MS m/e: 202 (M⁺).

The Monothiokep (22) — To a solution of 108 mg of 21a in 9 ml of anhyd MeOH was added 60 mg of ethanediol and 82 mg of BF₃·ether. The mixture was allowed to stand for 20 hr at room temperature. The reaction mixture was extracted with CHCl₃ and the extract was washed with a 3% NaOH solution, dried and evaporated under reduced pressure. Purification of the residue by preparative TLC afforded 134 mg (91%) of the monothiokep (22); colorless prisms mp 134° from ether. IR cm⁻¹: νC≡CCH 3300, νC≡N 2140, νC=N 1702. NMR δ: 1.34 (3H, s, CH₃), 2.19 (1H, d, δ=1.5 Hz, −C≡CH), 3.28–3.48 (4H, m, S−(CH₂)₃−S−), 5.59 and 5.92 (each 1H, d, δ=10 Hz, olefinic protons). Anal. Calcd. for C₆H₁₄S₂O₂: C, 64.71; H, 6.52. Found: C, 64.43; H, 6.54.

The Compounds (23) and (24) — To a solution of 215 mg of 22 in 8 ml of anhyd MeOH was added 230 mg of p-TsNH₂. The mixture was refluxed for 9 hr and the solvent was removed under reduced pressure to leave 343 mg of the crude crystals. To a solution of the crystals in 2.5 ml of anhyd DMF and 2.5 ml of anhyd sulfone were added 58 mg of anhyd p-TsOH and 194 mg of NaBH₄CN. The mixture was heated at 110° (oil bath temperature) for 5 hr with stirring under the argon atmosphere. To the mixture were further added 194 mg of NaBH₄CN and 58 mg of anhyd p-TsOH. Vigorous stirring was continued for further 16 hr at 110–120°. The reaction mixture was extracted with AcOEt–ether (1:4) and the extract was washed with water, dried and evaporated under reduced pressure to leave 208 mg of the residue. Separation of the residue by preparative TLC on SiO₂ gave 32 mg of the crude oil (A) from the less polar zone, 57.5 mg of the crude oil (B) from the middle zone, and 78 mg of the recovered hydrazone from the most polar zone. Purification of both the oil (A) and (B) by preparative TLC provided 28 mg (14%) of the compound (24) and 44 mg (22%) of the compound (23), respectively. 23: colorless prisms, mp 80–82° from n-pentane. IR cm⁻¹: νC≡CCH 3300, νC≡N 2140. NMR δ: 1.08 (3H, s, CH₃), 2.04 (1H, d, δ=2 Hz, −C≡CH), 3.28–3.42 (4H, m, S−(CH₂)₃−S−), 5.33 (1H, d, δ=10 Hz, C₂=H), 5.70 (1H, d, d, δ=10 and 1 Hz, C₂−H). MS m/e: 264 (M⁺).
24: IR cm⁻¹: νC=O 1645, δOCH 1000, 915. NMR δ: 1.05 (3H, s, CH₃), 3.27—3.40 (4H, m, -S-(CH₂)₃-S-), 4.75—6.05 (3H, m, vinyl protons), 5.37 (1H, d, J = 10 Hz, C₁-H), 5.69 (1H, d, d, J = 10 and 1.5 Hz, C₂-H). MS m/z: 266 (M⁺).

The α,β-Unsaturated Ketone (25) — To a solution of 86 mg of 23 in 11 ml of CHCl₃ was added 229 mg of Ti(NO₃)₃·3H₂O in 9 ml of anhyd. MeOH under stirring at 0°C. After 10 min, the reaction mixture was diluted with water and the organic layer was separated. The aqueous layer was extracted with CHCl₃ and the washing was combined with the organic layer. After drying, evaporation of the solvent under reduced pressure gave 71 mg of the residue which was purified by preparative TLC on Al₂O₃ to yield 37 mg (60%) of the α,β-unsaturated ketone (25). IR cm⁻¹: νC=O 3300, νC=O 1510, νC=O 1670. NMR δ: 1.25 (3H, s, CH₃), 2.08 (1H, d, J = 2 Hz, -C≡CH), 5.90 (1H, d, J = 10 Hz, C₁-H), 6.58 (1H, d, d, J = 10 and 1 Hz, C₂-H). MS m/z: 188 (M⁺).

1-Methoxy-3-trimethylsilyloxy-1,3-pentadiene (4) — The powder of 150 g of AlC₃ was added to 125 g of propionyl chloride under cooling by the freezing mixture of salt and ice. The mixture was stirred vigorously for 10 min and 140 g of vinyl bromide was added to the mixture in small portions during 15 min. Stirring was continued for 1 hr at 0°C and the crushed ice was added to the mixture. The reaction mixture was extracted with CHCl₃ and the extract was washed with a large amount of water, dried and evaporated under reduced pressure. The residue was immediately distilled to give 141 g of the pale yellow oil, bp 48—75/12 mmHg, which was indicated to be a mixture of the compound (26) and (27) in a ratio of 1:1 by its NMR spectrum. NMR δ: 1.09 and 1.10 (each 3H, t, J = 7 Hz, -CH₂-CH₃), 2.48 and 2.57 (each 2H, q, J = 7 Hz, -CH₂-CH₃), 3.63 (2H, d, J = 6.5 Hz, -COCH₂CH₂Br), 6.01 (1H, t, J = 6.5 Hz, -COCH₂CH₂Br), 6.80 (1H, d, J = 14 Hz, -COCH₂CH₂Br), 7.57 (1H, d, J = 14 Hz, -COCH₂CH₂Br).

A solution of 28 mg of sodium in 700 ml of anhyd. MeOH was added little by little to a solution of 141 g of the oil in 400 ml of anhyd. MeOH at 0°C. Stirring was continued for 40 hr at room temperature and the reaction mixture was extracted with ether. The extract was washed with a large amount of water, dried and evaporated under reduced pressure. The residual was immediately distilled to give 67 g of 1,1-dimethoxy-pentan-3-one in overall 35% yield from vinyl bromide, bp 69/3 mmHg.¹⁴

The powder of 670 mg of NaOMe was mixed with 67 g of the oil (28) and the mixture was heated at 160—170°C (oil bath temperature) until methanol was removed by distillation at atmospheric pressure and exhaustively by lowering occasionally the pressure of the reaction flask. Heating was continued for 8 hr and the reaction mixture was distilled under reduced pressure to give 38 g (73%) of the colorless oil of 1-methoxy-pent-1-en-3-one (29)¹⁰ bp 92—93/30 mmHg. To a suspension of 14 g of anhyd. ZnCl₂ in 120 ml of anhyd. Et₂N was added 38 g of the compound (29) in 120 ml of anhyd. ether at room temperature. After 10 min, 106 g of trimethylsilyl chloride was added to the mixture little by little at 0°C with stirring. The mixture was distilled at 80°C for 20 hr and then at room temperature for 3 days. The reaction mixture was filtered with a glass filter and the filtrate was concentrated under reduced pressure. The residue was immediately distilled to yield 43 g (70%) of 1-methoxy-trimethylsilyloxy-1,3-pentadiene (4), which was indicated to be the E and Z isomers in a ratio of 3:4:1 or vice versa by its NMR spectrum, bp 72—76/9 mmHg. IR cm⁻¹: νC=O 1655, 1623, νSi=O 653. NMR δ: 0.18 and 0.22 (total 6H, m, -SiMe₃), 1.60 (total 3H, br, d, J = 7 Hz, -CH₂CH₃), 3.55 and 3.65 (total 3H, s, -OMe), 4.62 and 5.15 (total 1H, q, J = 7 Hz, -CH₂CH₂), 5.56 and 6.04 (total 1H, d, each J = 12.5 and 12 Hz), 6.55 and 6.80 (total 1H, d, each J = 12.5 and 12 Hz). MS m/z: 188 (M⁺).

The Diels-Alder Adducts (30a), (30b) and (30c) — To a solution of 7.701 g of 5-ethynyl-2-methyl-2-hexene-2-en-1-one (3) in 30 ml of anhyd. xylene was added 32 g of 1-methoxy-3-trimethylsilyloxy-1,3-pentadiene (4) in 30 ml of anhyd. xylene. The mixture was heated at 190—210°C for 3 days in a sealed tube. The solvent was removed under reduced pressure and the residue in 2N HCl—THF (each 320 ml) was refluxed for 2 hr. The reaction mixture was extracted with ether and the extract was washed with water, dried and evaporated under reduced pressure to leave the residue which was chromatographed on SiO₂. Elution of the column with n-hexane gave the less polar crude oil and continuous elution with 10—25% ether in n-hexane afforded 0.546 g of the Diels-Alder adduct (30b) in an earlier fraction and then 0.300 g of 30c, 1.315 g of 30a, 0.375 g of 31 and the oily compound, respectively, in the later fractions. The oily compound was hydrolyzed and separated in a similar manner to provide additional crops of the compounds, (30a), (30b), (30c), and (31), respectively. The total yields of these compounds were 2.014 g (16%) of 30a, 0.774 g (6%) of 30b, 0.480 g (4%) of 30c and 1.357 g (31: diene dimer), respectively. 30a: colorless plates mp 145—146°C from CH₂Cl₂. IR cm⁻¹: νC=O 3300, νC=O 2150, νC=O 1718, νC=O 1683. NMR (100 MHz) δ: 1.16 (3H, d, J = 7 Hz, -CH₂CH₃), 1.46 (3H, s, CH₃), 1.63 (1H, octet, J = 14, 13 and 4 Hz, C₃=CH₂), 1.99 (1H, m, C₄=H₂), 2.11 (1H, d, J = 2.5 Hz, -C≡CH), 2.58 (2H, m, C₃=CH), 2.73 (1H, m, C₂=H), 2.99 (1H, d, q, J = 7 and 4.5 Hz, C₃=H), 3.22 (1H, m, C₄=H), 6.01 (1H, d, J = 10 Hz, C₄=H), 6.32 (1H, d, d, J = 10 and 2 Hz, C₅=H). Anal. Calcd. for C₇H₈O₂: C, 77.75; H, 7.46. Found: C, 77.80; H, 7.61. 30b: colorless pills mp 80°C from n-hexane—ether. IR cm⁻¹: νC=O 3300, νC=O 2150, νC=O 1710, νC=O 1680. NMR δ: 1.17 (3H, d, J = 7 Hz, -CH₂CH₃), 1.43 (3H, s, CH₃), 2.18 (1H, d, J = 2 Hz, C₃=CH), 2.96 (1H, d, q, J = 7 and 3.5 Hz, C₄=H), 6.03 (1H, d, J = 10 Hz, C₃=H), 6.53 (1H, d, d, J = 10 and 2 Hz, C₅=H). Anal. Calcd. for C₇H₈O₂: C, 77.75; H, 7.46. Found: C, 77.64; H, 7.64. 30c: colorless pills mp 75—77°C from n-hexane—ether. IR cm⁻¹: νC=O 3270, νC=O 2130, νC=O 1700, νC=O 1680. NMR δ: 1.14 (3H, m, -CH₂CH₃), 1.52 (3H, s, CH₃), 2.22 (1H, d, J = 1.5 Hz, -C≡CH), 6.04 (1H, d, J = 10 Hz, C₃=H), 6.77 (1H, d, J = 10 Hz, C₄=H). Anal. Calcd. for C₇H₈O₂: C, 77.75; H, 7.46. Found: C, 77.97; H, 7.75.
31: colorless prisms mp 85° from n-hexane-ether. IR cm⁻¹: νOH 3560, 3350, νCO 1608. NMR δ: 1.22 (3H, t, J = 7.5 Hz, -CH₂CH₃), 2.29 (3H, s, CH₃), 2.96 (2H, q, J = 7.5 Hz, -CH₂CH₃), 6.90 (1H, br.s, aromatic proton). MS m/e: 164 (M⁺).

The Equilibrium Experiment of 30c—To a solution of 25 mg of 30c in 3.2 ml of t-BuOH was added 12 mg of BuOK powder and the mixture was allowed to stand for 2 hr at room temperature. The reaction mixture was extracted with AcOEt and the extract was washed with water, dried and evaporated under reduced pressure to leave 9 mg of the crystalline compounds which were a mixture of 30a and 30c in a ratio of 2:1 by its NMR, GLC and TLC.

The Hydroxy Compound (32)—To a solution of 372 mg of the minor adduct (30b) in 15 ml of iso-ProOH was added a solution of 23 mg of NaBH₄ in 3 ml of EtOH and 6 ml of iso-ProOH under stirring at room temperature. The mixture was stirred for 15 min and extracted with CHCl₃. The extract was washed with water, dried and evaporated under reduced pressure to leave 352 mg (94%) of 32, colorless prisms mp 127—129° from n-hexane-ether. IR cm⁻¹: νOH 3550, 3450, νCH₃ 3280, νC=O 2170, νCO 1672. NMR δ: 1.12 (3H, d, J = 7 Hz, -CH₂CH₃), 1.40 (3H, s, CH₃), 2.07 (1H, d, J = 2 Hz, -CH₂), 3.43 (1H, d, J = 12 and 4 Hz, -CHOH), 5.98 (1H, d, J = 10 Hz, C₂-H), 7.00 (1H, d, d, J = 10 and 2 Hz, C₂-H). MS m/e: 218 (M⁺).

The Mesylate (33)—To a solution of 73 mg of 32 in 5 ml of anhyd. pyridine was added 152 mg of methanesulphonyl chloride at 0°. The mixture was allowed to stand for 1 hr at room temperature. The reaction mixture was acetylated with an ice-cooled 10% HCl solution and extracted with CHCl₃. The extract was dried and evaporated to leave 92 mg (94%) of 33, colorless prisms mp 165—169° from ether-C₆H₅. IR cm⁻¹: νOH 3300, νCH₃ 2150, νCO 1678, νCO 1310—1400, νCO 1178, νCO 935. NMR δ: 1.13 (3H, d, J = 7 Hz, -CH₂CH₃), 1.43 (3H, s, CH₃), 2.07 (1H, d, J = 2 Hz, -CH₂), 3.10 (3H, s, OSO₂CH₃), 4.43 (1H, d, d, J = 12 and 4 Hz, -CHOH), 6.02 (1H, d, J = 10 Hz, C-H), 6.77 (1H, d, d, J = 10 and 2 Hz, C₂-H). Anal. Calcd. for C₆H₅O₂S: C, 60.62; H, 7.01. Found: C, 60.92; H, 7.01.

The Tosylate (34)—To a solution of 157 mg of 32 in 3 ml of anhyd. pyridine was added 1.243 g of p-toluenesulphonyl chloride at 0° and the mixture was allowed to stand for 24 hr at room temperature. The reaction mixture was acetylated with an ice-cooled 5% HCl solution and extracted with AcOEt. The extract was washed with water, dried and evaporated under reduced pressure. Purification of the residue by preparative TLC on SiO₂ yielded 179 mg (67%) of the tosylate (34), IR cm⁻¹: νOH 3300, νC=O 2130, νCO 1680, νCO 1370, 1175, νCO 938, 900. NMR δ: 1.09 (3H, d, J = 7 Hz, -CH₂CH₃), 1.28 (3H, s, CH₃), 2.05 (1H, d, J = 2 Hz, -CH₂); 2.47 (3H, s, aromatic CH₃), 2.96 (1H, d, d, J = 7 and 4 Hz, C₂-H), 4.43 (1H, d, d, J = 12 and 4 Hz, -CH₂OCH₃), 5.97 (1H, d, J = 10 Hz, C₂-H), 6.75 (1H, d, d, J = 10 and 2 Hz, C₂-H), 7.22 and 7.85 (each 2H, d, J = 8.5 Hz, aromatic proton). MS m/e 372 (M⁺).

The Hydroxy Compounds (35a), (35b) and (35c)—To a solution of 135 mg of the major adduct (30a) in 3 ml of abs. EtOH and 6 ml of iso-ProOH was added 8 mg of NaBH₄ at room temperature. The mixture was stirred for 25 min and additional 7 mg of NaBH₄ was added. After 10 min, the reaction mixture was extracted with AcOEt and the extract was washed with water, dried and evaporated under reduced pressure to leave 136 mg of the residue. Separation of the residue by preparative TLC on SiO₂ provided 61 mg (45%) of 35a from the less polar zone, 37 mg (27%) of 35b from the middle zone, and 17 mg (12%) of 35c from the most polar zone. 35a: colorless plates mp 144—145° from ether. IR cm⁻¹: νOH 3540, νC=O 3320, νC=O 2130, νCO 1675. NMR δ: 1.13 (3H, d, J = 7 Hz, -CH₂CH₃), 1.41 (3H, s, CH₃), 2.30 (1H, d, J = 2.5 Hz, -CH₂), 2.96 (1H, d, J = 10 Hz, C₂-H), 4.63 (1H, d, d, J = 10 and 2 Hz, C₂-H). MS m/e: 218 (M⁺).

35b: IR cm⁻¹: νOH 3540, 3450, νC=O 3300, νC=O 2130, νCO 1675. NMR δ: 1.09 (3H, d, J = 7 Hz, -CH₂CH₃), 1.43 (3H, s, CH₃), 2.12 (1H, d, J = 2.5 Hz, -CH₂); 2.93 (1H, d, d, J = 12 and 4 Hz, -CHOH), 5.97 (1H, d, J = 10 Hz, C₂-H), 6.98 (1H, d, d, J = 10 and 2 Hz, C₂-H). MS m/e: 218 (M⁺).

35c: IR cm⁻¹: νOH 3540, 3350, νC=O 3300, νC=O 2130, νCO 1675. NMR δ: 1.13 (3H, d, J = 7 Hz, -CH₂CH₃), 1.23 (3H, s, CH₃), 2.10 (1H, d, J = 2 Hz, -CH₂), 3.95 (1H, d, d, J = 11 and 5 Hz, -CHOH), 5.98 (1H, d, J = 10 Hz, C₂-H), 6.93 (1H, d, J = 10 Hz, C₂-H). MS m/e: 218 (M⁺).

The Monobenzolate (36) and the Compound (37)—To a solution of 71 mg of the major adduct (30a) in 7 ml of anhyd. THF was added 125 mg of LiAlH₄ at room temperature and the mixture was refluxed for 2 hr. The excess reagent was decomposed by addition of AcOEt and wet ether. The organic layer was decanted and the precipitates were washed thoroughly with three portions of ether and the organic layer and the washings were combined. After drying, evaporation of the solvents under reduced pressure gave 61 mg (86%) of the diol. To a solution of the diol in 1 ml of anhyd. pyridine was added dropwise 58 mg of benzoyl chloride and the mixture was allowed to stand for 18 hr at room temperature. The reaction mixture was made acidic with an ice-cooled 5% HCl solution and extracted with ether. The extract was washed with water, dried and evaporated under reduced pressure to leave 90 mg of the residue. Separation of the residue by preparative TLC on SiO₂ yielded 18 mg of the dibenzolate from the less polar zone, 38 mg (42%) of the monobenzolate (36) from the more polar zone and 13 mg of another monobenzolate from the most polar zone. Jones' oxidation of the latter monobenzolate did not give the compound (37). To a solution of 88 mg of 36 in 2 ml of acetonitrile was added 4 drops of Jones' reagent. After 10 min, the reaction mixture was diluted with MeOH and extracted with CHCl₃. The extract was washed with water, dried and evaporated under reduced pressure to afford 31 mg (82%) of the compound (37). IR cm⁻¹: νC=O 3300, νC=O 2150, νC=O 1708, νC=O 1275. NMR δ: 1.05—1.40 (6H, m, -CH₂CH₃ and CH₃), 2.18 (1H, d, J = 2 Hz, -CH₂); 5.32—6.18 (2H, m, olefinic...
protons), 7.40—8.18 (5H, aromatic protons). MS m/e: 322 (M⁺).

The Monothioketal (38) and the Dithioketal (39) —— To a solution of 52 mg of the major adduct (30a) in 3.5 ml of anhyd. MeOH were added 110 mg of ethanedithiol and 99 mg of BF₃·ether. The mixture was allowed to stand for 43 hr at room temperature and the reaction mixture was then made basic with a 3% NaHCO₃ solution and extracted with AcOEt. The extract was washed with water, dried and evaporated under reduced pressure to give 95 mg of the residue. Separation of the residue by preparative TLC on SiO₂ provided 11 mg (13%) of the dithioketal (39) from the less polar zone and 40 mg (57%) of the monothioketal (38) from the more polar zone. 38: IR cm⁻¹: ν₁ = 3325, ν₂ = 2140, ν₃ = 1708. NMR δ: 1.27 (3H, s, CH₃), 1.32 (3H, d, J = 7 Hz, -CH₂H), 2.15 (1H, d, J = 2.5 Hz, -C≡CH), 3.15—3.40 (4H, m, -S(-CH₂)₂-S⁻), 5.13 (1H, d, J = 10 Hz, C₁-H), 5.95 (1H, d, J = 10 Hz, C₃-H). MS m/e: 292 (M⁺). 39: colorless pillars mp 173—174° from ether-C₆H₄. IR cm⁻¹: ν₂ = 3300, ν₁ = 2150. NMR δ: 1.29 (3H, d, J = 7 Hz, -CH₂H), 1.43 (3H, s, CH₃), 2.16 (1H, d, J = 2.5 Hz, -C≡CH), 3.25 (6H, br.s, -S(-CH₂)₂-S⁻), 5.53 (1H, d, d, J = 10 and 2 Hz, C₁-H), 5.83 (1H, d, J = 10 Hz, C₃-H). MS m/e: 388 (M⁺).

The Olefinic Compound (40) and the Thiolket (41) of dL-Chamaecynone —— To a solution of 220 mg of 38 in anhyd. MeOH and CHCl₃ (each 4 ml) was added 224 mg of p-TsNH₃H₂. The mixture was refluxed for 10 hr and then solvents were removed under reduced pressure to give the crude oil. Separation of the oil by preparative TLC on SiO₂ afforded 345 mg of the crystalline tosylhydrazone of 38. To a solution of 218 mg of the tosylhydrazone in anhyd. sulfonate and DMF (each 1.5 ml) were added 120 mg of NaB₃CN and 35 mg of anhyd. p-TsOH. The mixture was heated at 110—115° (oil bath temperature) under the argon atmosphere for 4.5 hr with stirring and then added with additional 1 ml of anhyd. DMF, 1 ml of sulfonate, 117 mg of NaB₃CN and 35 mg of anhyd. p-TsOH. Stirring was continued at 110—120° for 15.5 hr. The reaction mixture was extracted with AcOEt—ether and the extract was washed with water, dried and evaporated under reduced pressure. Separation of the residue by preparative TLC on Al₂O₃ yielded 17 mg of the colorless oil from the less polar zone, 10 mg of the olefinic compound (40) from the middle zone, and 54 mg of the tosylhydrazone from the most polar zone. The colorless oil (17 mg) from the less polar zone was further purified by chromatography on neutral Al₂O₃ (Merck; activity I). Elution of the column with n-pentane furnished 13 mg of the thiolket (41) of dL-chamaecynone. 40: IR cm⁻¹: ν₁ = 3300, ν₂ = 2130. NMR δ: 1.13 (3H, s, CH₃), 1.33 (3H, d, J = 7 Hz, -CH₂H), 2.08 (1H, d, J = 2 Hz, -C≡CH), 3.25 (4H, br.s, -S(-CH₂)₂-S⁻), 5.15 (1H, d, d, J = 10 and 1.5 Hz, C₁-H), 5.80—5.65 (2H, m, C₄ and C₃-H), 5.73 (1H, d, J = 10 Hz, C₃-H). MS m/e: 276 (M⁺). 41: IR cm⁻¹: ν₁ = 3300, ν₂ = 2130. NMR δ: 1.07 (3H, s, CH₃), 1.24 (3H, d, J = 7 Hz, -CH₂H), 2.04 (1H, d, J = 2.5 Hz, -C≡CH), 3.05—3.45 (4H, m, -S(-CH₂)₂-S⁻), 5.13 (1H, d, d, J = 10 and 2 Hz, C₁-H), 5.81 (1H, d, J = 10 Hz, C₃-H). MS m/e: 278 (M⁺).

dL-Chamaecynone (I) —— To a solution of 15 mg of 41 in 2 ml of CHCl₃ was added a solution of 40 mg of Ti(NO₃)₃·3H₂O in 1.5 ml of anhyd. MeOH at 0° with stirring. After 10 min, the reaction mixture was diluted with water and the organic layer was separated. The aqueous layer was extracted with CHCl₃ and the extract was combined to the organic layer. After drying, the solvent was removed to leave the residue which was purified by preparative TLC on Al₂O₃ to yield 8 mg (73%) of the crystalline dL-chamaecynone (I). Recrystallization from n-pentane afforded 5.3 mg of dL-chamaecynone (I), as colorless prisms, mp 77—80°. IR (CCl₄) cm⁻¹: ν₁ = 3300, ν₂ = 2130, ν₃ = 1680. NMR (100 MHz; CCl₄) δ: 1.08 (3H, s, J = 7 Hz, -CH₂H), 1.29 (3H, s, CH₃), 1.93 (1H, d, J = 2 Hz, -C≡CH), 2.75—3.00 (2H, m), 5.78 (1H, d, J = 10 Hz, C₂-H), 6.30 (1H, d, d, J = 10 and 2 Hz, C₁-H). MS m/e: 202 (M⁺). High mass spectrum; Calcd. for C₁₆H₁₉O₃: 202.1558. Found: 202.1431.

Acknowledgement The authors are indebted to Professor T. Toda, Faculty of Science, Tohoku University, Sendai, Japan, for kindly providing us with an authentic sample of natural chamaecynone.