Sparsomycin Analogs. I. Synthesis of 5-Carboxy-6-methyluracil\(^1\)

SHOICHI KANATOMO,\(^*\) TETSUKO HASE, and SOTOO NAGAI

School of Pharmacy, Hokuriku University, Kanagawa-machi, Kanazawa 920-11, Japan

(Received July 29, 1980)

Methods for the synthesis of 5-carboxy-6-methyluracil (9), which is expected to be useful as an intermediate for the preparation of sparsomycin analogs, were investigated. A new route that leads to 9 from cyanoacetylurea \((8)\) via 2-cyano-3-oxobutanoylurea \((6a)\), 5-cyano-6-methyluracil \((7a)\), and 5-carbamoyl-6-methyluracil \((8)\), was developed. The total yield from 5 to 9 was 20.7%.

Keywords—5-carboxy-6-methyluracil; 5-cyano-6-methyluracil; 5-carbamoyl-6-methyluracil; 2-cyano-3-oxobutanoylurea; sparsomycin analogs

Sparsomycin \((1)\) was isolated in 1962 from the culture filtrate of *Streptomyces sparsogenes* var. *sparsogenes* sp. n. by Argoudelis et al.\(^2\) This compound was subjected to several preliminary biological tests, and exhibited moderate to high activity against several *in vivo* tumor systems, such as the Walker carcinosarcoma 256 and the sarcoma 180 solid tumor, in addition to moderate *in vitro* activity against various bacteria, fungi, and viruses.\(^3\)

The structure of this antibiotic was proposed by Wiley and MacKellar in 1970\(^4\) and recently a total synthesis of its enantiomer was independently reported by Ottenheijm et al.\(^5\) and Helquist et al.\(^6\) (Fig. 1).

The unique structural and biological properties of sparsomycin prompted us to investigate the structure-activity relationship of sparsomycin analogs. This report describes the synthesis of 5-carboxy-6-methyluracil, which is expected to be an intermediate for syntheses of sparsomycin analogs lacking the ethylene moiety.

5-Carboxy-6-methyluracil \((9)\) has been already prepared by the route shown in Chart 1 (path a) in Wiley and MacKellar's structural study\(^7\) of sparsomycin. In this synthetic route, 6-methyluracil \((2)\) was treated with formaldehyde to afford 5-hydroxymethyl-6-methyluracil \((3)\), then 3 was oxidized with CrO\(_3\) to afford 5-formyl-6-methyluracil \((4)\), and finally 4 was oxidized with KMnO\(_4\) in an alkaline medium to afford 9, in 43%, 20%, and 16% yields, respectively. Consequently the total yield from 2 to 9 was 1.4%. 4 has also been prepared by the oxidation of 3 with \(\text{K}_2\text{S}_2\text{O}_8\) containing AgNO\(_3\) in 63% yield.\(^7\)

When this figure is employed,
the total yield via path a is 4.3%. On the other hand, 4 has been directly prepared from 2 in 14% yield by the Reimer–Tiemann reaction (Chart 1, path b), and, if this figure is employed, the total yield from 2 to 9 (path b) would be 2.2%.

These poor yields are inappropriate for a synthetic route to sparsomycin analogs. Therefore we developed another route, shown in Chart 2, making use of 5-cyano-6-methyluracil (7a) as an intermediate.

Cyanocetylurea (5), prepared from cyanacetic acid and urea by the method in the literature, was treated with acetic anhydride in the presence of molten ZnCl₂ to give 2-cyano-3-oxobutanoic acid (6a) in 73% yield. The ureid 6a was treated with 10% NaOH to give a cyclized product in 89% yield.

In this cyclization reaction, two kinds of route were anticipated, i.e., route a and route b. If the reaction involves the initial nucleophilic attack of the amide nitrogen on the carbon atom of the cyano group, 5-acetyl-6-aminouracil (7a) should be formed. However, the infrared (IR) spectrum of our cyclization product showed a nitrile absorption band at 2230 cm⁻¹ and its mass spectrum showed the molecular ion peak of 5-cyano-6-methyluracil (7a) at m/e 151. On the basis of these data, the structure of this product was assigned as 7a. The elemental analysis data also supported this assignment.

An attempted hydrolysis of 7a with 1 N NaOH at 100° for 10 hr resulted in a quantitative recovery of unchanged 7a. 7a was hydrolyzed by heating with 90% H₂SO₄ to afford 5-carbamoyl-6-methyluracil (8) in 68% yield. Attempted alkaline hydrolysis of 8 was also unsuccessful. On the other hand, when 8 was heated with HCl–AcOH, 6-methyluracil (2) was formed with evolution of carbon dioxide.

Thus, the amide 8 was treated with n-butyl nitrite (n-BuONO) and HCl in acetic acid, and 5-carboxy-6-methyluracil (9) was successfully obtained in 47% yield. IR and NMR spectral data of 9 were identical with those of an authentic sample prepared from 2 according to the reported procedure.¹⁴b

Thus, we have developed a new route for the synthesis of 5-carboxy-6-methyluracil: the total yield from 5 to 9 was 20.7%.
Since 5-cyano-6-methyluracil (7a) and potent antitumor agents such as 5-fluorouracil (5-FU) and futrafal are structurally closely related, both having an electron-withdrawing group at position 5 of the uracil nucleus, we tested 7a for cytotoxic activity on HeLa cells by a colony formation method. However, 7a showed no activity at a concentration of 1, 10, or 100 μg/ml of the assay medium, while 5-FU as a control sample showed inhibition at a concentration of 1 μg/ml.

Synthesis of sparsomycin analogs lacking the ethylene moiety is being conducted in this laboratory.

Experimental

All melting points are uncorrected. IR spectra were taken on a JASCO IRA-2 spectrometer, mass spectra on a JEOL JMS-D100 mass spectrometer, UV spectra on a Hitachi 323 recording spectrophotometer, and NMR spectra on a JEOL JNM-MH-100 spectrometer with TMS as an internal standard. The abbreviations used are as follows: s, singlet; d, doublet; b, broad. For thinlayer chromatography, silica gel GF\textsubscript{254} (Merck) was used with the solvent system MeCOEt–Me\textsubscript{2}CO–H\textsubscript{2}O (7: 2: 1).

2-Cyano-3-oxobutanoyleurea (6a)—A mixture of 5.0 g (0.039 mol) of 5 (prepared from cyanacetic acid and urea in the presence of Ac\textsubscript{2}O in 82% yield by the reported method9) 20 ml of Ac\textsubscript{2}O and 0.5 g of molten ZnCl\textsubscript{2} was heated gently over a small flame for several minutes until a solution was obtained. The solution was immediately cooled in an ice bath. The solidified product was filtered off, washed with Et\textsubscript{2}O–EtOH, and dried in vacuo. The crude product was recrystallized from EtOH to yield 4.94 g (73%) of 6a, colorless needles, mp 161° (dec.). Anal. Calcld for C\textsubscript{5}H\textsubscript{7}NO\textsubscript{3}: C, 42.61; H, 4.17; N, 24.84. Found: C, 42.79; H, 4.23; N, 24.88. IR ν\textsubscript{max} cm-1: 2300 (CN), 1730, 1675. UV \(λ_{\text{max}}\) nm (e): 275 (80).

2-Cyano-3-oxopentanoyleurea (6b)—Acetylation of 5 (2.542 g, 0.02 mol) with (EtCO)\textsubscript{2}O (13 ml) and molten ZnCl\textsubscript{2} (0.25 g) afforded 1.5 g (41.0%) of 6b, mp 141–144° (dec.).

5-Cyano-6-methyluracil (7a)—4a (5.0 g, 0.03 mol) was mixed with 10% NaOH (20 ml, 0.05 mol). The mixture was shaken to give a solution, which solidified after a few minutes. The solidified mixture was heated at 60° for 2 min on a water bath, cooled to room temperature and acidified with 50% AcOH. The resulting precipitate was filtered off, washed with cold water, and dried in vacuo. The crude product was recrystallized from water to yield 4.03 g (89%) of 7a. Colorless prisms, mp above 300°. Anal. Calcld for C\textsubscript{5}H\textsubscript{7}NO\textsubscript{3}: C, 47.69; H, 3.33; N, 27.81. Found: C, 47.80; H, 3.08; N, 27.98. IR ν\textsubscript{max} cm-1: 2230 (CN), 1720, 1658. MS m/e: 151 (M+). UV \(λ_{\text{max}}\) nm (e): 278 (7900). Rf: 0.80.

5-Cyano-6-ethyluracil (7b)—Treatment of 6b (1.465 g, 8 mmol) as described for 7a followed by recrystallization from water gave 7b (139 mg, 11%) as colorless needles, mp 281° (dec.). Anal. Calcld for C\textsubscript{6}H\textsubscript{7}NO\textsubscript{3}: C, 50.00; H, 4.40; N, 24.99. Found: C, 50.04; H, 4.22; N, 24.81. IR ν\textsubscript{max} cm-1: 2230 (CN), 1730, 1665. MS m/e: 165 (M+). UV \(λ_{\text{max}}\) nm (e): 273.5 (11670).

5-Carbamoyl-6-methyluracil (8)—4a (1.51 g, 0.01 mol) was heated with 1.1 ml of H\textsubscript{2}O (0.661 mol) and 13.9 ml of conc. H\textsubscript{2}SO\textsubscript{4} at 110° for 16.5 hr. After cooling, the reaction mixture was poured over ice in a beaker. The precipitate was filtered off with suction, washed with cold water and recrystallized from water to yield 1.08 g (62%) of 8, colorless prisms, mp above 300°. Anal. Calcld for C\textsubscript{6}H\textsubscript{7}NO\textsubscript{4}: C, 41.15; H, 4.41; N, 23.99. Found: C, 41.42; H, 4.01; N, 23.92. IR ν\textsubscript{max} cm-1: 1720, 1685. MS m/e: 180 (M+).

NMR (DMSO-d\textsubscript{4}): 2.41 (s, 3H, CH\textsubscript{3}), 7.10 (b, 1H), 8.21 (b, 1H), 11.16 (b, 1H), 11.22 (b, 1H). UV \(λ_{\text{max}}\) nm (e): 268 (9065). Rf: 0.60.

5-Carbonyl-6-methyluracil (9)—Dry HCl gas was bubbled slowly through a solution of 0.169 g (0.001 mol) of the amide (8) in glacial acetic acid for 15 min. The solution was stirred and 0.210 g (0.002 mol) of α-BuONO was added to it. The reaction mixture was heated at 100° for 3 hr with stirring, then cooled. The solvent was removed in vacuo, and the product was recrystallized from water to give 0.080 g (47%) of 9. Colorless needles, mp 242° (dec.). Anal. Calcld for C\textsubscript{6}H\textsubscript{7}NO\textsubscript{4}: C, 49.02; H, 3.82; N, 15.91. Found: C, 41.27; H, 3.51; N, 16.34. IR ν\textsubscript{max} cm-1: 1720, 1610. MS m/e: 170 (M+). NMR (DMF-d\textsubscript{4}): 2.70 (s, 3H, CH\textsubscript{3}), 12.10 (b, 2H, NH), 13.78 (b, 1H, COOH). UV \(λ_{\text{max}}\) nm (e): 271 (8900). Rf: 0.30.

Acknowledgement We are indebted to Mrs. R. Igarashi for elemental analysis and to Miss T. Hirai for the measurement of mass spectra.

References and Notes

1) This work was reported at the 94th Meeting of the Hokuriku Branch of the Pharmaceutical Society of Japan, Toyama, December 1979.

