Biosynthesis of Scytalalone

USHIO SANKAWA,* a HISAO SHIMADA, a TOSHIHISA SATO, a TAKESHI KINOSHITA, a and KAZUO YAMASAKI b

Faculty of Pharmaceutical Sciences, University of Tokyo, a 7-3-1, Hongo, Bunkyo-ku, Tokyo 113, Japan and Institute of Pharmaceutical Sciences, Hiroshima University School of Medicine, b 1-2-3, Kasumi, Minami-ku, Hiroshima 734, Japan

(Received June 5, 1981)

The biosynthesis of scytalone, a simple derivative of tetralone, has been studied by using [1,2-13C2] and [2-13C, 2-4H2]-acetate. Scytalone labelled by [1,2-13C2]-acetate showed an unusual coupling pattern in the 13C-nuclear magnetic resonance (NMR) spectrum, indicating that all the carbon atoms coupled to both of the adjacent carbons. The results clearly demonstrate that scytalone is biosynthesized via a symmetrical aromatic intermediate, 1,3,6,8-tetrahydroxynaphthalene. Incorporation of 2H into C-4 and -5 from [2-13C, 2-4H2]-acetate was demonstrated by 1H and 2H decoupled 13C-NMR. In contrast, 2H was not observed on the other potential sites of labelling, C-2 and C-7. It has been shown that the use of [2-13C, 2-4H2]-acetate is effective in tracing the fate of acetate hydrogen in polyketide biosynthesis.

Keywords—biosynthesis; scytalone; polyketide; 13C; 2H; [2-13C, 2-4H2]-acetate; coupling; isotopic shift; Phialophora lagerbergii; fungus

Introduction

Since 13C-NMR was first applied to biosynthetic studies of natural products by Tanabe, much new information regarding the formation of carbon skeletons has been obtained. Double labelled acetate, [1,2-13C2]-acetate, was particularly effective in elucidating the mode of skeletal formation of polyketides and terpenoids. The labelling pattern of acetate is easily determined by 13C-13C coupling in 13C-NMR. 13C-13C coupling indicates the presence of 13C in an adjacent position, that is, coupling in 13C-NMR spectrum gives information concerning the atom bonded to the 13C carbon showing coupling. This suggests a further possibility for the utilization of other multiple labelled precursors in biosynthetic studies. Multiple labelled compounds containing 13C and other nuclei which cause coupling or isotopic shift in 13C-NMR can be used as precursors. In biosynthetic studies of polyketides, 2H, 17O7 and 18O7 are the nuclei to be used in combination with 13C. The fate of acetate hydrogen can be traced when [2-13C, 2-4H2]-acetate is used as a precursor, since 13C bearing 2H shows isotopic shift and unique 2H-13C coupling. This paper mainly deals with the biosynthesis of scytalone (1), which is a simple derivative of tetralone produced by imperfect fungi such as Scytallidium sp., Phialophora lagerbergii, and Verticillium dahliae. Its polyketide nature has been demonstrated by incorporation of [1-13C] and [2-13C]-acetate into the expected carbons of scytalone (1). On the other hand, it was reported that scytalone (1) was easily synthesized from 1,3,6,8-tetrahydroxynaphthalene (2) by reduction with sodium borohydride. Our

![Figure 1](image-url)
initial interest in the biosynthesis of scytalone (1) was in the possibility that scytalone (1) might be formed from a symmetrical intermediate (2) by the reduction of an aromatic ring. We first investigated this hypothesis by using [1,2-13C2]-acetate and then applied [2-13C, 2-2H3]-acetate to clarify the details of the mode of polyketide cyclization.

Results and Discussion

Cultures of Phialophora lagerbergii (IMI 96745) supplemented with either [1-13C] or [2-13C]-acetate in this study produced scytalone showing enhancement in the expected carbon signals. The 13C-NMR spectrum of scytalone labelled with [1,2-13C2]-acetate, however, showed unusual 13C-13C coupling patterns. Expanded NMR signals revealed that there were four large satellites in all the carbon signals except for C-3 and -5 indicating that all the carbons coupled to both of the adjacent carbons. In the case of C-3 and -5, the two kinds of coupling constant are almost the same, so that the two pairs of satellites were not resolved. A long range coupling between C-2 and -8a (Jc,C) and the values of Jc,c coupling of C-6 and -8 made it possible to assign the C-2, -4, -6 and -8 signals which had not been assigned unambiguously.10 The 13C-NMR data of scytalone labelled with [1,2-13C2]-acetate are summarized in Table I. The results clearly demonstrate the presence of two different mode of aceta rearrangement in scytalone (1a and 1b) labelled with [1,2-13C2]-acetate. As it appears in Fig. 2, the signal due to C-1 shows four large satellites arising from 13C-13C couplings with both of the adjacent carbons and four small signals arising from further 13C-13C couplings with another adjacent carbons simultaneously labelled by natural abundance 13C (1c and 1d) or by other [1,2-13C2]-acetate molecules (1e and 1f). The presence of the two different modes of aceta rearrangement clearly demonstrates that scytalone is biosynthesized via a symmetrical intermediate (2), in which the reduction of aromatic ring occurs with an equal probability in both of the aromatic rings. Scytalone (1) lacks a definite starting unit in its structure. If it is biosynthesized from one acetylCoA and four malonyl CoA via a C10 polyketo-intermediate (9), the starter methyl group should be involved in a cyclization reaction to give the symmetrical intermediate (2). Another possibility is that the intermediate (2) is formed by the cleavage of an acyl group from cyclized C12-Polyketo (10). In fact, a tetralone derivative possessing an ethyl side chain, asparvenone (11), was isolated from Aspergillus parvulus.13 An incorporation experiment with [13C]-malonate would solve this problem and we tried the incorporation of [14C]-malonate into scytalone as a preliminary experiment to check whether malonate could be used as a precursor. The specific incorporation ratios in repeated feeding experiments were 2.0—2.9% and it was evident that [13C]-malonate could not be used as a precursor in this

<table>
<thead>
<tr>
<th>Carbon</th>
<th>Multiplicity in off-resonance spectrum</th>
<th>ppm</th>
<th>1/c-c (Hz)</th>
<th>2/c-c (Hz)</th>
<th>1/c-H (Hz)</th>
</tr>
</thead>
<tbody>
<tr>
<td>C-1</td>
<td>s</td>
<td>202.0</td>
<td>40, 55</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C-2</td>
<td>t</td>
<td>47.1</td>
<td>38, 40</td>
<td>9</td>
<td>129</td>
</tr>
<tr>
<td>C-3</td>
<td>d</td>
<td>66.3</td>
<td>37</td>
<td>—</td>
<td>144</td>
</tr>
<tr>
<td>C-4</td>
<td>t</td>
<td>38.8</td>
<td>38, 40</td>
<td>—</td>
<td>129</td>
</tr>
<tr>
<td>C-4a</td>
<td>s</td>
<td>145.7</td>
<td>40, 63</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C-5</td>
<td>d</td>
<td>108.9</td>
<td>63</td>
<td>—</td>
<td>161</td>
</tr>
<tr>
<td>C-6</td>
<td>s</td>
<td>165.4</td>
<td>63, 67</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C-7</td>
<td>d</td>
<td>101.3</td>
<td>67, 70</td>
<td>—</td>
<td>160</td>
</tr>
<tr>
<td>C-8</td>
<td>s</td>
<td>165.9</td>
<td>61, 71</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>C-8a</td>
<td>s</td>
<td>111.4</td>
<td>54, 59</td>
<td>9</td>
<td>—</td>
</tr>
</tbody>
</table>

a) Relative to TMS.
study. As a next approach, we attempted to trace hydrogen incorporation from acetate. The application of 5H- and 9H-NMR to biosynthetic studies of polyketides has been reported and, for example, the labelling patterns of hydrogen isotopes in penicillil acid and griseofulvin were unambiguously established by using 5H- and 9H-NMR. We employed [2-13C,2-2H$_2$]-acetate as a tracer to detect the incorporation of acetate hydrogen by using 13C-NMR instead of 5H- or 9H-NMR. The incorporation of 5H from the multiple labelled acetate can be detected by 13C-2H coupling or as a decrease of signal intensity. If we assume that

![Chart 1](image-url)
the deuterium of acetate was retained in scytalone (1g and 1h) as shown in Chart 1, we could show by which pathways scytalone is biosynthesized. The 1H-decoupled 13C-NMR spectrum of scytalone labelled by $^{[2-13]$C, 2-2H$_3$]-acetate showed only one 13C-2H signal arising from C-4 (Fig. 3). The signal was observed as a triplet (1:1:1; $J_{13C-^2H}=20$ Hz) centered at 38.5 ppm, 0.3 ppm higher than the corresponding 13C-1H signal, clearly demonstrating that a part of 13C present at C-4 was labelled by one 2H. As 13C bearing 2H does not contribute to the enhancement of signal intensity in the corresponding 13C-2H signal, the presence of 2H can be detected as a decrease of signal intensity. Although the intensities of the C-5 signal indicated that 13C at C-5 was labelled by 2H to a significant extent, no signal with 13C-2H coupling was observed. C-2 and -7, the other possible labelling sites, did not show any indication of the presence of 2H. As a 13C-2H signal might not be observed because of low
sensitivity, we measured the 13C-NMR under deuterium noise-decoupled conditions (Fig. 4). In this spectrum, the 13C-2H signal of C-4 appeared as a doublet ($J_{^1H-^1C}=127$ Hz) centered at 38.4 ppm among the triplet signals of 13C-1H and that of C-5 as a singlet at 108.7 ppm between the doublet of 13C-1H, all observed at higher field than the corresponding 13C-1H signals. No indication of the presence of 3H at C-2 and C-7 was obtained in this spectrum. The results so far obtained demonstrate the incorporation of one 3H from the multiple labelled acetate into C-4 and C-5. Comparison of signal intensities between the 13C-NMR spectra of scytalone labelled with [2-13C] and [2-13C, 2-2H$_3$]-acetate revealed that ca. 40% of 3H was retained on 13C at C-4 and C-5 (Fig. 3). We cannot draw any positive conclusion regarding the cyclization of the polyketo-intermediate from the incorporation study with [2-13C, 2-2H$_3$]-acetate. The loss of 3H from C-2 and -7 would be accounted for by two different possibilities. One is the involvement of the starter unit in the cyclization, in which C$_{10}$ polyketo-intermediate had lost all the 3H except for the starting methyl prior to the cyclization. The other is the loss of 3H at the stage of the symmetrical intermediate (2a or 2b), in which the rate of exchange of α and β hydrogen atoms is different. The loss of 3H from potential sites of labelling requires further study. Next we tried to isolate cometo-metabolites of scytalone in the hope of obtaining potential intermediates. Ethyl acetate extracts of cultured broth were chromatographed on silica gel. In addition to known metabolites, scytalone (1) and flavinol (12), four new metabolites, cis-4-hydroxyscytalone (13), cis-4-hydroxy-6-deoxyscytalone (14), 5-hydroxyscytalone (15) and cis-4-hydroxyscytalone-3,4-acetonide (16), were isolated and identified. The last compound seems to be an artifact formed during the isolation, and the other compounds do not appear to be intermediates in the biosynthesis of scytalone (1).

![Diagram of compounds 11-16]

Fig. 5

Since we first used [2-13C, 2-2H$_3$]-acetate in polyketide biosynthesis, this method has become one of the standard methods to trace the fate of acetate hydrogen. This method is particularly effective in detecting the number of 3H atoms at labelling sites and cannot be replaced by other methods.

Experimental

Proton noise decoupled 13C-NMR spectra were measured with a JEOL FX-100 and the deuterium noise decoupled 13C-NMR spectrum was obtained with a Varian XL-100. [1-13C], [2-13C] and [1,2-13C$_2$]-acetate were obtained from Merck Sharp and Dohme Canada, Ltd., and [2-13C]-malonate from British Oxygen Company, Ltd. [813C]-Acetate and malonate were purchased from Radioisotope Association. A strain of Phialophora lagerbergii was obtained from CM1.

Synthesis of [2-13C, 2-2H$_3$]-acetate—[2-13C]-Malonate (90.6 atom %) (255 mg) was dissolved in 3H$_2$O (99 atom %) (3 ml) and 3H$_2$O was removed in vacuo. This procedure was repeated three times. Deuterated malonate obtained by this exchanging reaction was decarboxylated by heating at 160—180°C for 15 min and distilled under reduced pressure. The distillate was condensed in a trap cooled with dry ice and acetone.
[2-14C, 3H2]-Acetic acid thus obtained was dissolved in H2O and neutralized with 2N NaOH. On removal of H2O by evaporation, [2-14C, 2-3H2]-sodium acetate (185 mg) was obtained in a yield of 95%.

Incorporation of Labelled Compounds—Incorporation experiments with [14C] and [3H, 14H]-acetate were carried out after the establishment of feeding conditions by repeated experiments with [14C]-acetate. *Phialophora lagerbergii* (IMI 967455) maintained on Czapek-Dox slant was inoculated in 500 ml Erlenmeyer flasks each containing 150 ml of Czapek-Dox medium supplemented with 0.1% yeast extract (DIFCO) and 5% sucrose and grown on a shaker at 200 rpm for 7 days. Five ml aliquots of precultured medium were inoculated in the fresh medium. On the 5th day of production culture [1,2-14C2]-sodium acetate (99.5 mg; 90 atom%) and [1-14C]-sodium acetate (9.66 x 10^3 dpm; 8.16 x 10^4 dpm/mm) dissolved in 5 ml of H2O were added to two flasks. The culture was harvested on the 9th day of production culture and filtered to remove mycelia. The filtrate was adjusted to pH 2 with 2N HCl and extracted with EtOAc. EtOAc was removed and the residue was chromatographed on silica gel which had been treated with 0.5 N oxalic acid and activated. Elution with CHCl3-MeOH (95:5) gave scytalone (1) (140.8 mg; 1.35 x 10^5 dpm/mm). The culture administered [2-14C, 2-3H2]-sodium acetate (123.8 mg) and [1-14C]-sodium acetate (2.72 x 10^5 dpm; 1.60 x 10^6 dpm/mm) gave labelled scytalone (1) (57.6 mg; 5.35 x 10^5 dpm/mm).

Isolation of Scytalone and Other Conatabolites—A large-scale cultivation of *Phialophora lagerbergii* (IMI 967455) was performed in 65 flasks with the same medium as used in the incorporation experiments. After a 7 day preculture, production culture was continued for 11 days. The filtrate of broth (97.5 l) was acidified with 1N HCl and extracted with EtOAc. The extract was chromatographed on silica gel with CHCl3-MeOH (95:5–90:10) to give scytalone (4.43 g) (1), flavilone (312 mg) (12), cis-4-hydroxyxycsaldehyde (100 mg) (13), cis-4-hydroxy-6-deoxyscytalone (10 mg) (14), 5-hydroxycsaldehyde (10 mg) (15) and cis-4-hydroxyscytalone-3,4-acetonide (8 mg) (16). cis-4-Hydroxyscytalone (13), mp 168–170°C (benzene-acetone). MS m/z: Calcd for C13H14O4: 210.0528. Found: 210.0548. IR νmax cm⁻¹: 3540, 1695, 1633, 1600, 1490, 1375. UV λmax nm (log ε): 216 (5.08), 235 (2.60), 285 (3.02), 324 sh (2.60). 1H-NMR (acetone-d6) δ: 2.70 (d, J = 5, C-2 H2), 4.28 (m, C-3 H), 4.76 (d, J = 3, C-4 H), 6.15 (d, J = 9, C-7 H), 6.58 (d, J = 2, C-5 H), 12.64 (s, C-8 OH). cis-4-Hydroxy-6-deoxyscytalone (14), mp 85–85°C (benzene-acetone–hexane). MS m/z: Calcd for C13H16O4: 214.0579. Found: 214.0582. IR νmax cm⁻1: 3480, 3020, 1640, 1450, 1310, 1236. UV λmax nm (log ε): 260 (3.62), 355 (2.96). 1H-NMR (acetone-d6) δ: 2.92 (m, C-2 H2), 4.38 (m, C-3 H), 4.90 (d, J = 3, C-4 H), 7.10 (dd, J = 2, 9, C-5 H), 7.49 (t, J = 9, C-6 H), 6.80 (dd, J = 2, 9, C-7 H), 12.40 (s, C-8 OH). 5-Hydroxycsaldehyde (15), mp 164–165°C (dec). MS m/z: Calcd for C13H12O5: 210.0528. Found: 210.0581. IR νmax cm⁻1: 3260, 3200, 1675, 1635, 1545, 1502, 1463. UV λmax nm (log ε): 243 (3.44), 288 (3.42), 356 (2.76). 1H-NMR (acetone-d6) δ: 2.5–3.2 (m, C-2 H2, C-3 H2), 4.28 (m, C-3 H), 6.18 (s, C-7 H), 12.66 (s, C-8 OH). cis-4-Hydroxyscytalone-3,4-acetonide (16), mp 157–158°C (benzene–hexane). MS m/z: Calcd for C15H16O6: 250.0841. Found: 250.0866. IR νmax cm⁻1: 3240, 2980, 2910, 1652, 1625, 1602, 1458. UV λmax nm (log ε): 218 (2.83), 253 (2.30), 283 (2.60), 326 sh (2.02). 1H-NMR (acetone-d6) δ: 1.16, 1.42 (s, Me×2), 2.96 (m, C-2 H2), 4.64 (dd, J = 4.5, C-3 H), 5.07 (d, J = 4, C-4 H), 6.50 (dd, J = 1, 2, C-5 H), 6.28 (d, J = 2, C-7 H), 12.62 (s, C-8 OH).

References and Notes

