Convenient Procedure for the Preparation of α-Amino Alcohols

MINORU KUBOTA,*a OSAMU NAGASE,a and HARUAKI YAJIMA*

Research Institute, Daiichi Seiyaku Co., Ltd.,a 1-16-13 Kitakasai, Edogawa-ku, Tokyo, 132, Japan and Faculty of Pharmaceutical Sciences, Kyoto University,b
Sakyo-ku, Kyoto, 606, Japan

(Received November 13, 1980)

Various Nα-protected amino acid active esters used in peptide chemistry were found to be excellent source materials for the preparation of the corresponding amino alcohols by reduction with sodium borohydride. The validity of this procedure for the convenient preparation of aliphatic alcohols was demonstrated by taking stearyl alcohol as an example.

Keywords—sodium borohydride reduction; Nα-protected L-amino alcohols; Nα-protected amino acid active esters; stearyl alcohol; stearic acid

Sodium borohydride is one of the most useful reducing agents for aldehydes and ketones, but not generally for carboxylic acid esters. Yamada et al. reported that the facile reduction of optically active α-amino acid esters and their hydrochlorides with sodium borohydride took place to give the corresponding optically active α-amino alcohols in fairly good yields, and in better yields when the carboxylic acids were converted to the corresponding mixed anhydrides with ethyl chloroformate. Chaikin et al. reported that acid chlorides were effectively reduced to alcohols by sodium borohydride.

Information now available indicates that carboxylic acids in activated forms with increased electrophilicity are more susceptible to sodium borohydride reduction. We found that a number of Nα-protected L-amino acid active esters, more stable activated derivatives than mixed anhydrides and acid chlorides, could be smoothly converted, under cooling with ice, to the corresponding Nα-protected amino alcohols with retention of the configuration.

In order to determine optimum reaction conditions, reduction of four active esters of Z(OMe)–Met–OH; Z(OMe)–Met–OPCP, Z(OMe)–Met–OTCP; Z(OMe)–Met–OSu and Z(OMe)–Met–ONB, with sodium borohydride was performed in comparison with that of Z(OMe)–Met–OMe.

Table I. Preparation of Z(OMe)–Met–ol from the Various Active Esters

<table>
<thead>
<tr>
<th>R</th>
<th>NaBH₄ (eq.)</th>
<th>Temp. (°C)</th>
<th>Time (min)</th>
<th>Yield (%)</th>
<th>[α]⁰ (MeOH)</th>
</tr>
</thead>
<tbody>
<tr>
<td>TCP</td>
<td>10</td>
<td>10</td>
<td>15</td>
<td>87</td>
<td>-24.2</td>
</tr>
<tr>
<td>TCP</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>85</td>
<td>-24.2</td>
</tr>
<tr>
<td>PCP</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>88</td>
<td>-23.8</td>
</tr>
<tr>
<td>Su</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>93</td>
<td>-23.9</td>
</tr>
<tr>
<td>NB</td>
<td>5</td>
<td>10</td>
<td>15</td>
<td>75</td>
<td>-24.1</td>
</tr>
<tr>
<td>Me</td>
<td>5</td>
<td>25</td>
<td>120</td>
<td>92</td>
<td>-24.1</td>
</tr>
</tbody>
</table>
As shown in Table I, five moles of sodium borohydride was sufficient to bring the reduction of active esters to Z(OMe)-Met-OH to completion at below 10° within 15 min, while reduction of Z(OMe)-Met-OMe required 120 min at 25°. The progress of reactions was monitored by thin layer chromatography, but the reduction of all active esters tested was so fast that we were not able to select the most efficient active ester at this stage. The retention of configuration during the reduction was confirmed by deprotection of the product followed by characterization of H-Met-OH as the oxalate.2

<table>
<thead>
<tr>
<th>Product</th>
<th>Yield (%)</th>
<th>mp</th>
<th>[α]D in MeOH</th>
<th>Anal. Calcd Found</th>
</tr>
</thead>
<tbody>
<tr>
<td>Z(OMe)-Leu-OPCP</td>
<td>86</td>
<td>65-68°</td>
<td>-25.5° (c=0.4)</td>
<td>64.03 8.24 4.98</td>
</tr>
<tr>
<td>Z(OMe)-Ile-ONB</td>
<td>88</td>
<td>61-63°</td>
<td>-17.7° (c=0.8)</td>
<td>64.03 8.24 4.98</td>
</tr>
<tr>
<td>Z(OMe)-Arg(Mts)-Osu</td>
<td>88</td>
<td>43-48°</td>
<td>-7.2° (c=0.4)</td>
<td>56.90 6.76 11.06</td>
</tr>
<tr>
<td>Z(OMe)-Phe-ONP</td>
<td>78</td>
<td>96-98°</td>
<td>-41.9° (c=0.6)</td>
<td>68.55 6.71 4.44</td>
</tr>
</tbody>
</table>

As shown in Table II, we next confirmed that similar conditions could be applied for the reduction of other amino acid active ester by taking Z(OMe)-Leu-OPCP, Z(OMe)-Ile-ONB, Z(OMe)-Arg(Mts)-Osu and Z(OMe)-Phe-ONP as examples. From the practical viewpoint, we judged that Su or NB ester, bearing water-soluble partner components is preferable for our purpose, because they made the purification of products easier than with the other esters so far tested.

We also found that sodium borohydride could quantitatively reduce stearic acid N-hydroxy-5-norbornene-2,3-dicarboximide ester to stearyl alcohol, though somewhat prolonged treatment was required. The result implies that the N-hydroxy type active ester procedure we describe herein can be applied, like other phenyl esters,7 for the easy preparation of other aliphatic esters, and probably also more complex alcohols.

Experimental

Thin-layer chromatography was performed on silica gel (Kieselgel G, Merck). RF values refer to the following solution systems: RF4 CHCl3-MeOH-H2O (8: 3: 1), RF4 CHCl3-MeOH-AcOH (95: 5: 3), RF5 n-BuOH-AcOH-H2O-AcOEt (1: 1: 1: 1).

Z(OMe)-Amino Acid Active Esters—The active esters of Z(OMe)-amino acids: TCP, PCP, NP, Su and NB esters, were prepared according to the procedure for the preparation of the corresponding Z-derivatives. Among the compounds prepared, Z(OMe)-Met-OTCP and Z(OMe)-Phe-ONP are known compounds.

Attempts to solidify Z(OMe)-Met-ONB and Z(OMe)-Arg(Mts)-Osu have been unsuccessful. Z(OMe)-Met-ONB: RF4 0.93. Z(OMe)-Arg(Mts)-Osu: RF4 0.83.

Z(OMe)-Metal-OMe—An ether solution of diazomethane was added to an ice-chilled solution of Z(OMe)-Met-OH (1.25 g, 4 mmol) in MeOH (10 ml); the yellow color persisted for 15 min. After addition of a few drops of AcOH, the solvent was evaporated off. The residue was triturated with n-hexane and...
recrystallized from AcOEt and n-hexane; yield 1.06 g (81%), mp 40–43°C. [α]D20 -30.8° (c=0.7, MeOH), Rf 0.78. Anal. Calcd for C8H11NO3S: C, 55.03; H, 6.47; N, 4.28. Found: C, 54.90; H, 6.43; N, 4.33.

Reduction of Z(OMe)-Met-Active Esters with NaNBH4 —— NaNBH4 (1.9 g, 50 mmol or 0.95 g, 25 mmol) was dissolved in 80% MeOH (30 ml or 15 ml). To this ice-chilled solution, a solution of Z(OMe)-Met-active ester (5 mmol) in THF–MeOH (8 ml–8 ml) was added dropwise for 15 min. After the addition, stirring was continued in an ice-bath for 15 min, then the solution was neutralized with 1 N HCl. Thin-layer chromatography showed that the starting material had disappeared, and a new spot (Rf 0.51) was seen. The solvent was evaporated off and the residue was dissolved in AcOEt. The organic solution was washed with 1 N HCl, 5% NaHCO3 and H2O–NaCl, dried over Na2SO4 and then concentrated. The residue was triturated with n-hexane and the resulting powder was recrystallized from AcOEt and n-hexane. The results are listed in Table I. The product derived from the PCP ester was characterized by elemental analysis and the others were identified by comparison of the IR spectrum with that of the corresponding authentic sample. mp 62–64°C, [α]D20 -24.2° (c=1.4, MeOH), Rf 0.70, Rf 0.51. Anal. Calcd for C14H23NO3S: C, 56.18; H, 7.07; N, 4.68. Found: C, 55.81; H, 6.97; N, 4.75.

l-Methionin Oxalate —— Z(OMe)-Met–ol (2.23 g, 7.5 mmol) derived from the PCP ester was treated with TFA-anisole (6 ml–4 ml) in an ice-bath for 60 min, then n-hexane was added. The resulting oily precipitate was dried over KOH pellets in vacuo for 3 hr and then dissolved in 5% NaHCO3. The solution was extracted with CHCl3. The organic layer was washed with H2O–NaCl, dried over Na2SO4 and then concentrated. The resulting oil residue was dissolved in EtOH (10 ml) and oxalic acid (0.94 g, 7.5 mmol) in EtOH (10 ml) was added. The resulting solid was recrystallized from EtOH; yield 1.23 g (73%), mp 165–168°C, [α]D20 +7.2° (c=0.3, H2O) (lit.9 mp 161–161.5°C, [α]D20 +6.4° in H2O), Rf 0.68. Anal. Calcd for C6H11NO3S: C, 37.32; H, 6.71; N, 6.22. Found: C, 37.33; H, 6.70; N, 6.23.

Reduction of Various Z(OMe)-Amino Acid Active Esters with NaNBH4 —— To an ice-chilled and stirred solution of NaNBH4 (0.95 g, 25 mmol) in 80% MeOH (15 ml), a solution of Z(OMe)-amino acid active ester (5 mmol) in THF–MeOH (8 ml–8 ml) was similarly added and the product was isolated in essentially the manner described above. The results are listed in Table II.

CH3(CH2)4COONB —— In the usual manner, DCC (2.06 g, 10 mmol) was added to a solution of stearic acid (2.64 g, 10 mmol) and HONB (1.79 g, 10 mmol) in THF (20 ml) and the solution was stirred at room temperature for 18 hr. After filtration, the filtrate was concentrated and the residue was triturated with n-hexane; yield 4.01 g (90%), mp 66–68°C, Rf 0.80. Anal. Calcd for C28H50NO4: C, 72.77; H, 9.73; N, 3.14. Found: C, 72.75; H, 9.45; N, 3.23.

CH3(CH2)4CH(OH) (Stearyl Alcohol) —— To an ice-chilled solution of NaNBH4 (0.95 g, 25 mmol) in 80% MeOH (20 ml), a solution of CH3(CH2)4COONB (2.23 g, 5 mmol) in THF (30 ml) was added dropwise. The mixture was stirred at room temperature for 60 min, then neutralized with 1 N HCl. The solvent was evaporated off, and the residue was dissolved in AcOEt. The organic layer was washed with 1 N HCl, 5% NaHCO3 and H2O–NaCl, dried over Na2SO4 and then evaporated to dryness. The resulting powder was recrystallized from EtOH and H2O; yield 1.08 g (90%). The product was identified as stearyl alcohol by comparison with an authentic sample (Tokyo Kasei Kogyo Co., Ltd., lot. AFO 1). When the reaction was carried out in an ice-bath, the reaction did not reach completion within 60 min. The corresponding methyl ester was treated with NaNBH4 at room temperature, but the reaction was incomplete even after 180 min.

Acknowledgement The authors are grateful to Dr. Yoshio Morita, the vice director of the Research Institute, Daiichi Seiyaku Co., Ltd., for his encouragement throughout this work.

References and Notes

1) The following abbreviations are used: Z(OMe) = p-methoxybenzylxoycarbonyl, OPCP = pentachlorophenyl ester, OTCP = 2,4,6-trichlorophenyl ester, OSu = N-hydroxysuccinimide ester, ONP = p-nitrophenyl ester, ONB = N-hydroxynorbornene-2,3-dicarboximide ester, Met–ol = methioninol, Mt= mesitylene-2-sulfonyl, CHA = cyclohexylamine, DCC = dicyclohexylcarbodiimide, THF = tetrahydrofuran.

