SPECTROPHOTOMETRIC EVIDENCE FOR THE FORMATION OF A SUPEROXIDE ADDUCT OF CHROMIUM(III) TETRAARYLPORPHYRIN COMPLEX

Toshihiko Ozawa* and Akira Hanaki
National Institute of Radiological Sciences, 9-1, Anagawa-4-chome, Chiba-shi 260, Japan

This is the first report of the reaction of the superoxide ion \(\cdot O_2^- \) with chloro-5,10,15,20-tetraphenylporphyrinatochromium(III), Cr(III)(TPP)Cl, in dimethyl sulfoxide (DMSO) to give the superoxide adduct Cr(III)(TPP)(\(\cdot O_2^- \))Cl.

KEYWORDS—superoxide ion; \(\cdot O_2^- \); chloro-5,10,15,20-tetraphenylporphyrinatochromium(III); Cr(III)(TPP)Cl; visible spectrum; superoxide adduct; Cr(III)(TPP)(\(\cdot O_2^- \))Cl; oxygenated hemoglobin; oxygenated cytochrome P450

The superoxide ion \(\cdot O_2^- \) does not usually function as a substrate for hemoproteins, but the metal-\(\cdot O_2^- \) center is formally involved in oxygenated hemoglobin and cytochrome P450. If the superoxide adduct could be produced during the reaction of \(\cdot O_2^- \) with metalloporphyrins, these superoxide adducts would be good models for the oxygenated hemoglobin and cytochrome P450. Recently, it has been reported that Cr(II)(TPP)(py)(\(\cdot O_2^- \)) which is prepared from Cr(II)(TPP)(py) and molecular oxygen may exist in the state of Cr(III)-\(\cdot O_2^- \). If this is true, the direct formation of the superoxide adduct by the reaction of \(\cdot O_2^- \) with Cr(III)(TPP)Cl may be possible. Therefore, we have examined in detail the reaction of \(\cdot O_2^- \) with Cr(III)(TPP)Cl in dimethyl sulfoxide (DMSO) by ultraviolet(UV)/visible spectrophotometry and found the formation of the superoxide adduct, Cr(III)(TPP)(\(\cdot O_2^- \))Cl.

UV/visible spectra were measured with a Union Giken SM-401 spectrophotometer at room temperature. The superoxide ion was prepared from KO2 which was solubilized by dicyclohexyl-18-crown-6 in DMSO and its concentration was determined by the reduction method of ferricytochrome c. Cr(III)(TPP)Cl was prepared by the method of Basolo and co-workers and purified by column chromatography on silica gel with chloroform (CHCl₃) as eluent. Using a microsyringe, aliquots of \(\cdot O_2^- \) solutions \((10^{-3} - 10^{-2} \text{ M}) \) were introduced into 2 ml of Cr(III)(TPP)Cl solution \((10^{-6} - 10^{-5} \text{ M}) \) in a capped quartz cuvette with a light path of 10 mm. The reactions were started by shaking the cuvette vigorously, and visible spectra were recorded immediately.

When \(\cdot O_2^- \) solutions were successively added to Cr(III)(TPP)Cl, the visible spectrum changed with isosbestic points (402, 441 and 460 nm) as shown in Fig. 1.
The Soret band underwent a blue shift and the other bands either a red or a blue shift (Table I). Upon addition of excess pyridine to this reaction solution, the newly observed spectrum was replaced by that of the pyridine adduct Cr(III)(TPP)(py)Cl. The visible spectrum of this new chemical species observed during the reaction of O$_2^-$ with Cr(III)(TPP)Cl is different from that of the TPP complexes of Cr(II), Cr(IV) and Cr(V) (Table I). When the DMSO solution of OH$^-$, which was prepared from KOH solubilized with crown ether, was successively added to Cr(III)(TPP)Cl, the spectral changes obtained were similar to those observed upon addition of O$_2^-$ (Table I). It is reasonable to consider that OH$^-$ ligates to the axial position of Cr(III)(TPP)Cl. These results strongly support the idea that the chemical species initially formed upon the reaction of O$_2^-$ with Cr(III)(TPP)Cl is the superoxide adduct Cr(III)(TPP)(O$_2^-$)Cl. This is the first known evidence that Cr(III) porphyrin directly coordinates with superoxide ion.

The spectral shifts accompanying with the formation of Cr(III)(TPP)(O$_2^-$)Cl are particularly interesting. As mentioned above, the Soret band undergoes a blue region shift and the other bands either a red or a blue shift upon addition of O$_2^-$ (Table I). On the other hand, when O$_2^-$ is added to the non-redox metalloporphyrins such as Zn(II)$^-$, Cd(II)$^-$ and Mg(II)-TPP, all the absorption band undergoes a red shift. The spectrophotometric study of the effect of axial ligation to ZnTPP16 and CdTPP10 has shown that the red shift of the spectrum derives from the density of the negative charge transferred from the ligand to the porphyrin ring via Zn or Cd atom. Gouterman et al. have shown that shifts in the transition energies and relative intensities of the α and β bands in octaethylporphyrinato(VI) halides are related to changes in the electron density on the porphyrin ring.17

Fig. 1. Absorption Spectral Changes of Cr(III)(TPP)Cl Accompanying with the Titration with O$_2^-$

2 µl of O$_2^-$ solution was successively added to 2 ml solution of Cr(III)(TPP)Cl in DMSO.

Starting concentration:

Cr(III)(TPP)Cl, 1.0x10$^{-5}$ M;

O$_2^-$, 3.2x10$^{-2}$ M.
Table I. Visible Spectra of Different Oxidation States of Chromium Porphyrins

<table>
<thead>
<tr>
<th>Cr complex</th>
<th>Solvent</th>
<th>λmax/nm</th>
<th>Ref.</th>
</tr>
</thead>
<tbody>
<tr>
<td>Cr(II)TPP</td>
<td>Toluene</td>
<td>422, 542, 575sh, 600sh</td>
<td>11</td>
</tr>
<tr>
<td>Cr(III)(TPP)Cl</td>
<td>DMSO</td>
<td>396, 448, 522, 568, 608</td>
<td>This work</td>
</tr>
<tr>
<td>Cr(III)(TPP)(O_2^-)Cl</td>
<td>DMSO</td>
<td>415sh, 438, 525, 566, 602</td>
<td>This work</td>
</tr>
<tr>
<td>Cr(III)(TPP)(OH^-)Cl</td>
<td>DMSO</td>
<td>391, 443, 528, 563, 602</td>
<td>This work</td>
</tr>
<tr>
<td>Cr(III)(TPP)(py)Cl</td>
<td>DMSO</td>
<td>396, 449, 527, 567, 606</td>
<td>This work</td>
</tr>
<tr>
<td>Cr(IV)O(TPP)</td>
<td>THF</td>
<td>375, 433, 546, 580</td>
<td>12</td>
</tr>
<tr>
<td></td>
<td>Toluene</td>
<td>433, 546, 580</td>
<td>13</td>
</tr>
<tr>
<td>Cr(V)O(TPP)Cl</td>
<td>CH_2Cl_2</td>
<td>418, ~540</td>
<td>14</td>
</tr>
<tr>
<td>Cr(V)N(TPP)</td>
<td>Benzene</td>
<td>421, 542</td>
<td>15</td>
</tr>
<tr>
<td></td>
<td>DMSO</td>
<td>424, 550</td>
<td>This work</td>
</tr>
</tbody>
</table>

a) sh; shoulder.

These results mean that visible spectral changes are related to the electron density on the porphyrin ring. Similarly, the blue shift derived from the O_2^- adduct formation of Cr(III)(TPP)Cl may also be related to the electron density in the porphyrin ring. Further studies with this interesting system are in progress, using electron spin resonance (ESR).

REFERENCES AND NOTES

2) Abbreviations used: TPP, tetraphenylporphyrin; py, pyridine; DMSO, dimethyl sulfoxide; O_2^-, superoxide ion; UV, ultraviolet; THF, tetrahydrofuran; ESR, electron spin resonance.
9) Other isosbestic points were observed at 521, 539, 571, 592, 603, and 639 nm.

(Received August 27, 1984)