IMPROVING THE AQUEOUS STABILITY OF PROSTAGLANDIN E₂ AND PROSTAGLANDIN A₂ BY INCLUSION COMPLEXATION WITH METHYLATED-β-CYCLODEXTRINS

Fumitoshi Hirayama, Masahiko Kurihara, and Kaneto Uekama
Faculty of Pharmaceutical Sciences, Kumamoto University,
5-1 Oe-honmachi, Kumamoto 862, Japan

The effects of two methylated-β-cyclodextrins, heptakis(2,6-di-O-methyl)-β-cyclodextrin (DM-β-CyD) and heptakis(2,3,6-tri-O-methyl)-β-cyclodextrin (TM-β-CyD), on the dehydration rate of prostaglandin E₂ (PGE₂) and the isomerization rate of prostaglandin A₂ (PGA₂) in aqueous alkaline solution were investigated in comparison with natural β-cyclo-
dextrin (β-CyD). In contrast to the acceleration effect of β-CyD, both DM-β-CyD and TM-β-CyD significantly retarded the reaction rates. The stabilizing effect of DM-β-CyD was larger than that of TM-β-CyD. Stability constants and rate constants of the complexes were kinetically determined on the basis of 1:1 inclusion complex formation. The data suggest that DM-β-CyD is useful in the stabilization of PGEs and PGAs in aqueous solution.

KEYWORDS —— prostaglandin E₂ dehydration; prostaglandin A₂ isomerization; methylated-β-cyclodextrin; inclusion complexation; stabilization

Prostaglandins are essentially long-chain fatty acids containing a substituted cyclopentane ring. The β-hydroxyketo moiety in E-type prostaglandins (PGEs: PGE₁ and PGE₂) is extremely susceptible to dehydration under acidic or alkaline conditions, giving A-type prostaglandins (PGAs: PGA₁ and PGA₂) which are consecutively isomerized to E-type prostaglandins (PGBs: PGB₁ and PGB₂) under alkaline conditions.¹ This chemical instability of PGEs has limited the development of dosage formulas, a substantial challenge to pharmaceutical scientists.² We have recently reported³ that the chemical stability of PGE₁ in solid state was significantly improved by cyclodextrin (CyDs) complexations. However, an attempt to stabilize PGE₁ or PGA₁ in aqueous solution was rather disappointing because the natural CyDs had positive-catalytic effects on the reactions.⁴

Recently, considerable attention has been paid to chemically modified CyDs since their physicochemical properties and inclusion behaviors are significantly different from those of natural CyDs.⁵ In the present study, we successfully stabilized PGE₂ and PGA₂ in aqueous solution, which are known
to be much more unstable than PGE₁ and PGA₁,¹ by using two methylated-β-CyDs, i.e., heptakis(2,6-di-O-methyl)-β-CyD (DM-β-CyD) and heptakis(2,3,6-tri-O-methyl)-β-CyD (TM-β-CyD).

The consecutive reaction rate of PGE₂ (see Chart 1, dehydration (k₁) and isomerization (k₂)) was spectrophotometrically monitored by measuring the increased absorbance of PGB₂ at 284 nm.¹ The graphically calculated k₁ and k₂ values from the PGB₂ concentration-time curves were refined to obtain the best fit by using a nonlinear least-squares method for a consecutive-first order reaction.

![Chart 1](image)

Figure 1 shows the effects of DM-β-CyD, TM-β-CyD and β-CyD concentrations on the reaction rates of PGE₂ and PGA₂. In contrast to β-CyD, both DM-β-CyD and TM-β-CyD were found to retard the reaction rates with increasing concentrations. The dependency of kₜobs on the CyD concentration was quantitatively treated by Eq.(1)⁶ to obtain the stability constant (K_c) and rate constant (k_c) of the complex, on the following 1:1 complexation scheme (Chart 2), where k_o and (CyD)ₜ are the rate constant in the absence of CyDs and the total concentration of CyDs, respectively.

![Chart 2](image)

\[
\frac{(\text{CyD})_t}{k_o - k_{\text{obs}}} = \frac{1}{k_o - k_c} \cdot (\text{CyD})_t + \frac{1}{k_c \cdot (k_o - k_c)} \quad \text{Eq. (1)}
\]

The plots according to Eq.(1) fell well on the straight line with an accuracy of 5%. Table I summarizes k_o, k_c, k_c/k_o, and K_c values. As is apparent from Table I, the dehydration and isomerization rates were significantly retarded by the complexes with the methylated CyDs, particularly by the binding to DM-β-CyD. Interestingly, the stabilizing effect of DM-β-CyD was
Fig. 1. Effects of Three CyDs on the Rate Constants for Dehydration of
PGE₂ (Left) and Isomerization of PGA₂ (Right) in Phosphate Buffer
(pH 11.0, θ = 0.2) at 60°C.
The concentration of PGE₂ and PGA₂ was 3.0 x 10⁻⁵ M.

Table I. Rate Constants and Stability Constantsa) of PGE₂-CyD
and PGA₂-CyD Systems

<table>
<thead>
<tr>
<th>System</th>
<th>k₀ (h⁻¹)</th>
<th>kₐ (h⁻¹)</th>
<th>kₐ/k₀</th>
<th>Kₐ (M⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>PGE₂</td>
<td>20.8</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGE₂-DM-β-CyD</td>
<td></td>
<td>6.93</td>
<td>0.33</td>
<td>620</td>
</tr>
<tr>
<td>PGE₂-TM-β-CyD</td>
<td></td>
<td>14.7</td>
<td>0.71</td>
<td>280</td>
</tr>
<tr>
<td>PGE₂-β-CyD</td>
<td></td>
<td>62.0</td>
<td>3.0</td>
<td>940</td>
</tr>
<tr>
<td>PGA₂</td>
<td>2.02</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA₂-DM-β-CyD</td>
<td></td>
<td>0.75</td>
<td>0.37</td>
<td>390</td>
</tr>
<tr>
<td>PGA₂-TM-β-CyDb)</td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>PGA₂-β-CyD</td>
<td></td>
<td>6.34</td>
<td>3.1</td>
<td>810</td>
</tr>
</tbody>
</table>

a) Kinetic conditions were the same as in Fig. 1.
b) Could not be determined with accuracy due to the small change in kₐ/k₀.
larger than that of TM-β-CyD. This might be due to little penetration of the bulky guest molecule into the TM-β-CyD cavity since the macrocyclic ring of TM-β-CyD is markedly distorted from the regular heptagonal symmetry of β-CyD and DM-β-CyD. Further studies are now in progress to elucidate the stabilization mechanisms of DM-β-CyD and TM-β-CyD.

Although various attempts have been made to improve the chemical stability of PGEs by pharmaceutical additives, only a few have succeeded in stabilizing them in aqueous solution. So, our present findings will not only provide a useful means for the aqueous preparation of PGEs, they will also be extended to various dosage formulas for other chemically unstable drug molecules, by utilizing the inclusion complexation of methylated CyDs.

REFERENCES

(Received September 10, 1984)