Synthesis of Fused s-Triazoles from 2-Methanesulfonyl-5-phenyl-1,3,4-oxadiazole and Binucleophilic Reagents by Means of Intramolecular Ring Transformation

TADASHI SASAKI,* MASATOMI OHNO, and EIKOH ITO

Institute of Applied Organic Chemistry, Faculty of Engineering, Nagoya University,
Furo-cho, Chikusa-ku, Nagoya 464, Japan

(Received April 2, 1984)

2-Methanesulfonyl-5-phenyl-1,3,4-oxadiazole (4) reacted with 3-aminopropanol and 2-aminoethanethiol in the presence of triethylamine to give displaced and rearranged products 2-(5,6-dihydro-4H-1,3-oxazin-2-yl)- (6b) and 2-(2-thiazolin-2-yl)benzhydrazide (9), which were further cyclodehydrated by heating to give the corresponding fused s-triazoles (7) and (10), respectively. In the case of the reaction with a diaminoalkane only the 1:2 adduct (8) was obtained.

Keywords—intramolecular ring transformation; pyrolysis; 2-methanesulfonyl-5-phenyl-1,3,4-oxadiazole; binucleophilic reagent; 6,7-dihydro-5H-s-triazolo[3,4-b]oxazine; 5,6-dihydrothiazolo[2,3-c]-s-triazole

Some triazole-fused ring systems are known to possess biological activities (e.g., insecticidal, bactericidal, etc.). In order to access this class of compounds, we have developed the intramolecular ring transformation shown in Eq. 1.

\[
\begin{array}{ccc}
1 & \stackrel{i, ii}{\longrightarrow} & 2 \\
\text{i: halo-ketone (or its equivalent) ii: amination } & & 3 \\
& \text{iii: heat} & \\
\end{array}
\]

\[Y = S, \text{ CH}_2\]

Chart 1

During the course of our program, we were intrigued by the nucleophilic displacement of 2-methanesulfonyl-1,3,4-oxadiazole (4). In view of this facile functionalization at the 2-position it seems reasonable to make use of 4 as a versatile starting material for the above synthetic route to fused s-triazoles; the reaction with binucleophilic reagents (5, Y = O, NH, S) may construct a requisite structure such as 2 in a single step, and the subsequent intramolecular ring transformation (iii in Eq. 1) might lead to the desired s-triazole. This report deals with the reactions of 4 with amino alcohols (5a, b), diamines (5c, d) and 2-aminoethanethiol (5e); in the last case we correct a previous erroneous assignment by other workers.

The reactions of 4 with 2-aminopropanol (5a) and 3-aminopropanol (5b) in the presence of triethylamine gave 2-(2-oxazolin-2-yl)-(6a) and 2-(5,6-dihydro-4H-1,3-oxazin-2-yl)benzhydrazide (6b) in 41 and 72% yields, respectively, as the result of displacement and further rearrangement. The hydrazide function of 6 was observed at around 3300 (NHNH) and 1620 (C=O) cm\(^{-1}\) in the infrared (IR) spectra and at \(\delta\) 8.70 for 6a and 8.50 for 6b as a
broad singlet (NHNH) in the proton nuclear magnetic resonance (1H-NMR) spectra. The cyclodehydration of 6b to the 6,7-dihydro-5H-s-triazolo[3,4-b][1,3]oxazine 7 was performed by heating a solution of 6b in o-dichlorobenzene at reflux temperature for 27 h. Structural assignment was based on spectral and elemental analyses; the ring closure was supported by the absence of absorptions due to amino and carbonyl groups in the IR spectrum and by the disappearance of an NHNH signal in the 1H-NMR spectrum. Unfortunately the ring closure of 6a did not take place under the same conditions.

![Diagram](chart3.png)

In the case of diaminoalkane (5c, d) the expected 1:1 adduct could not be obtained, but both amino groups of 5c and d reacted with 4 to give the 1:2 adduct 8 which was identified from the mass spectrum. A similar result was obtained even with a large excess of diamine.

![Diagram](chart4.png)

In the same manner as with the amino alcohols (5a, b) the reaction of 4 with 2-aminoethanethiol (5e) gave 2-(2-thiazolin-2-yl)benzhydrazide (9) in 73% yield; the structure of 9 was readily deduced from a spectral comparison with the analogous hydrazide which we had in hand.\(^3\) On pyrolysis (neat, 280 °C/5 mmHg), the obtained hydrazide 9 was cyclodehydrated to the desired 5,6-dihydrothiazolo[2,3-c]-s-triazole 10 in 22% yield. This type of ring closure has already been demonstrated by us.\(^3\)

![Diagram](chart5.png)
Indian chemists have reported cyclizations of 2-benzoylhydrazino-2-thiazoline hydrobromide and of 5-mercapto-3-phenyl-s-triazole with 1,2-dibromoethane, where the products (“A” and “B”) were assigned as 10 and isomeric 2-phenyl-5,6-dihydrothiazolo[3,2-b]-s-triazole (11), respectively. We repeated their experiments. However, the synthesized product “A” was not identical with our product in terms of mp, thin-layer chromatography (TLC), and IR and 1H-NMR spectra; the characteristic absorptions at 1440 and 1475 cm⁻¹ of “A” were quite different from those at 1435, 1465 and 1480 cm⁻¹ of our product in the IR spectra. In the 1H-NMR spectrum of “A”, a D₂O-exchangeable broad singlet at δ 8.68 together with signals at δ 3.35—4.65 (4H, m) and 7.27—8.25 (5H, m) is decisively incompatible with the structure assigned by them. However, the IR and 1H-NMR spectra of the product “B” were consistent with those of our product. As the present route to 10 should be valid by analogy with a previous example, the product “A” is not 10 and the product “B” should be reassigned as 10.

Experimental

Melting points were measured with a Yanagimoto micromelting point apparatus and are uncorrected. Microanalyses were performed with a Perkin-Elmer 240B elemental analyzer. The 1H-NMR spectra were determined with a JEOL C60HL spectrometer, and chemical shifts are reported in δ units downfield from internal tetramethylsilane. The IR spectra were determined on a JASCO IRA-1 spectrometer, and data are reported in units of cm⁻¹. All of the crystalline products were scanned in KBr disks. Mass spectra (MS) were obtained with a Hitachi RMS-4 mass spectrometer at 70 eV. Pyrolysis was carried out with a Shibata GTO-250 glass tube oven.

2-(2-Oxazolin-2-yl)benzoylhydrazide (6a) —— 2-Aminoethanol (0.24 ml, 4 mmol) and triethylamine (0.28 ml, 2 mmol) were added to a solution of 4 (0.45 g, 2 mmol) in THF (15 ml) at room temperature and the mixture was stirred for 12 h. After removal of the solvent, the residue was washed with water and the resulting solids were collected to give 0.17 g (41%) of 6a. mp 132—135 °C (EtOH-H₂O). IR νmax: 3250, 3090, 2940, 2860, 1620, 1555, 1490, 1445. 1H-NMR (CF₃COOH): 4.0—4.9 (4H, m, CH₂), 7.4—8.2 (5H, m, Ph), 8.75 (2H, brs, NHNH). Anal. Calcd for C₁₀H₁₂N₂O₂: C, 58.53; H, 5.40; N, 20.48. Found: C, 58.88; H, 5.23; N, 20.30.

2-(5,6-Dihydro-4H-1,3-oxazin-2-y1)benzoylhydrazide (6b) —— By the same treatment as above. 6b was obtained in 72% yield from 4 and 3-aminopropanol: mp 132—134 °C (EtOH-H₂O). IR νmax: 3530, 3230, 3080, 2940, 2870, 1620, 1575, 1485, 1445. 1H-NMR (CF₃COOH): 2.39, 3.90 and 4.68 (each 2H, quintet, t, respectively, J = 7 Hz, CH₂), 7.6—8.2 (5H, m, Ph), 8.50 (2H, brs, NHNH). Anal. Calcd for C₁₄H₁₄N₂O₂: C, 60.26; H, 5.98; N, 19.17. Found: C, 60.33; H, 5.89; N, 18.95.

3-Phenyl-6,7-dihydro-5H-s-triazole[3,4-b][1,3]oxazine (7) —— A solution of 6b (0.22 g, 1 mmol) in o-dichlorobenzene (7 ml) was heated under reflux for 27 h. After removal of the solvent in vacuo, the residue was chromatographed on a silica gel column (CHCl₃-EtOH = 10:1) to give 0.11 g (54%) of 7. mp 185—187 °C. IR νmax: 2940, 1550, 1495, 1460, 1440. 1H-NMR (CDCl₃): 2.18, 4.12 and 4.45 (each 2H, quintet, t, respectively, J = 6 Hz, CH₂), 7.3—7.9 (5H, m, Ph). Anal. Calcd for C₁₄H₁₁N₃O: C, 65.66; H, 5.51; N, 20.88. Found: C, 65.81; H, 5.61; N, 20.60.

Reactions of 4 with Diamines (5c, d) —— The products 8a and 8b were obtained in 44% and 26% yields from 4 and ethylenediamine (5c) and from 4 and 1,3-diaminopropane (5d), respectively, by the same procedure as for 6a except that stirring was carried out for 3 d (5c) or 9 d (5d). The yields were raised to 75% and 41%, respectively, when the ratio of 4 to the diamine was 2:1. 8a: mp 250—252 °C (EtOH). IR νmax: 3240, 3040, 1620, 1560, 1480, 1440. 1H-NMR (CF₃COOH): 4.0—4.6 (4H, m, CH₂), 7.4—8.2 (10H, m, Ph), 9.05 (2H, m, NHNH). MS m/e (%): 348 (M⁺, 30), 105 (87), 77 (100). Anal. Calcd for C₁₆H₁₄N₂O₂: C, 62.14; H, 4.80; N, 23.87. Found: C, 62.06; H, 4.63; N, 24.12. 8b: mp 215—217 °C (EtOH). IR νmax: 3225, 3030, 2950, 2870, 1620, 1560, 1485, 1465, 1440. 1H-NMR (CF₃COOH): 2.2—2.7 (2H, m, CH₂), 3.6—4.3 (4H, m, NCH₂), 7.3—8.1 (10H, m, Ph), 8.50 (2H, brs, NHNH). MS m/e (%): 362 (M⁺, 8), 105 (100), 77 (68). Anal. Calcd for C₁₄H₁₂N₂O₂: C, 62.97; H, 5.01; N, 23.19. Found: C, 63.02; H, 5.14; N, 23.01.

2-(2-Thiazolin-2-yl)benzoylhydrazide (9) —— 2-Aminooethanethiol (0.18 g, 2.3 mmol) and triethylamine (0.33 ml, 2.4 mmol) were added to a solution of 4 (0.50 g, 2.2 mmol) in THF (20 ml) and the mixture was stirred at room temperature for 7 h. After removal of the solvent, the residue was washed with water and the resulting solids were collected by filtration to give 0.24 g of 9. An additional 0.12 g (total yield, 73%) of 9 was extracted from the washings with CHCl₃: mp 210—211 °C (EtOH-H₂O). IR νmax: 3180, 3100, 2910, 1600, 1570, 1535, 1490. 1H-NMR (CF₃COOH): 3.80 and 4.32 (each 2H, t, J = 7 Hz, CH₂), 7.4—8.1 (5H, m, Ph), 8.88 (2H, brs, NHNH). Anal. Calcd for C₁₆H₁₄N₂O₃S: C, 54.28; H, 5.01; N, 18.99. Found: C, 54.27; S, 5.14; N, 18.83.

3-Phenyl-5,6-dihydrothiazolo[2,3-c]-3-s-triazole (10) —— The hydrazide 9 (0.30 g, 1.4 mmol) was heated at 280 °C under a vacuum (5 mmHg) for 30 min in a glass tube oven with a trap bulb heated at 200 °C. After cooling to room
temperature, the trapped product was chromatographed on a silica gel column (AcOEt) to give 60 mg (22%) of 10, mp 199—201 °C. IR ν_max: 2960, 1630, 1480, 1465, 1435. 1H-NMR (CDCl₃): 3.9—4.6 (4H, m, CH₂), 7.3—7.9 (5H, m, Ph). Anal. Caled for C₁₀H₈N₂S: C, 59.09; H, 4.46; N, 20.67. Found: C, 59.30; H, 4.58; N, 20.34.

References and Notes

5) Such consecutive reactions in a single procedure have often been seen in the reductive amination of some keto-1,3,4-oxadiazoles; see ref. 3b.