HEPATOTOXICITY OF HYDRAZINE IN ISOLATED RAT HEPATOCYTES

Toshiaki Sendo, a Atsuko Noda, *, a Kohji Ohno, a Shigeru Goto a
and Hiroshi Noda b

Faculty of Pharmaceutical Sciences, Kyushu University, a Maidashi 3-1-1,
Higashi-ku, Fukuoka 812, Japan, and Department of Hospital Pharmacy,
School of Medicine, University of Occupational and Environmental
Health, Japan (Sangyo Ika-Daigaku), b Iseigaoka 1-1,
Yahatanishi-ku, Kitakyushu 807, Japan

Cytotoxicity of hydrazine (Hz) and acetylhydrazine (AcHz) was investi-
gated using isolated rat hepatocytes. 10⁻⁴, 10⁻³ and 10⁻²M of Hz decreased
hepatocellular reduced glutathione (GSH) in a strongly dose-dependent manner,
while AcHz showed little effect on the GSH levels at any concentration exa-
mined. The results reveal that Hz is more hepatotoxic than AcHz.

KEYWORDS —— hydrazine; acetylhydrazine; isolated rat hepatocyte
system; reduced glutathione

Hydrazine (Hz) is a toxic, hazardous metabolite of isoniazid (INH), causing fatty
liver and liver necrosis, and is a mutagen and a carcinogen. ¹, ² It has been detected
by gas chromatograph-mass spectrometer in the urine of INH-dosed patients with tuber-
culosis. ³ It is well-known that liver injury is frequently caused in patients on INH
treatment. However, the precise metabolite responsible for INH-induced hepatitis has
never been identified, although Timbrell et al. postulated that INH-induced liver necro-
sis may be caused by the chemically reactive metabolite of INH, monoacetylhydrazine
(AcHz). ⁴ In 1981, Bahri and Timbrell et al. described that AcHz did not produce nec-
crosis in nonpretreated rats but only in phenobarbital pretreated groups. ⁵ On the
other hand, we found that Hz induced more marked hepatic injury than AcHz, and analogous
but more intensive necrosis took place in rabbits pretreated with rifampicin. This
suggested that Hz could be a key intermediate which induced hepatic injury during INH
therapy. ⁶ These facts prompted us to compare the extent of cytotoxicity of Hz and
AcHz using the isolated rat hepatocyte system.

Isolated hepatocytes were obtained from male Wistar rats (300-350 g) by the col-
genase perfusion method according to Moldéus et al. ⁷ One ml of the cell suspension
which contains 4 X 10⁶ cells/ml was incubated for 10, 20 or 30 min with 10⁻⁴, 10⁻³ or
10⁻²M of a substrate under O₂/CO₂ (95:5, v/v%) at 37°C in a rotating round bottomed
flask. The control experiment was performed with vehicle only.

Incubation of Hz or AcHz in isolated hepatocytes for 30 min induced markedly dose-
dependent cell-death as indicated by a trypan blue test. This test, however, did not
show a distinct difference between Hz and AcHz in the extent of cell-injury. For
instance, 37.4% or 36.0% increase of cell-damage occurred, compared to the control ex-
perient, when 10⁻²M of Hz or AcHz was employed, respectively. We determined, there-
fore, the content of reduced glutathione (GSH) ⁸ in the hepatocytes incubated with Hz
or AcHz.
The amount of reduced GSH in the control hepatocyte system (7.0 ± 1.0 μg/10^-6 cells) decreased slightly during the incubation at 37°C for 30 min. A significant time- and dose-dependent depletion of hepatocellular reduced GSH levels was induced by Hz-treatment, and a dramatic decrease of GSH was observed by treatment with 10^-2 M Hz (Fig. 1, left). However, AcHz caused very little GSH depletion (Fig. 1, right). Bahri et al. also reported that GSH was not depleted significantly by a hepatotoxic dose of AcHz in the liver homogenates obtained from phenobarbital-pretreated rats. 5)

The present results on reduced GSH depletion and our previous histological data, 6) with careful consideration of Bahri's data, 5) suggest that Hz is the more important hepatotoxin and that it plays a role in INH-induced hepatic injury greater than AcHz. It is evident that GSH depletion is closely related to the cytochrome P-450 dependent formation of the reactive electrophile (s) from Hz. Interestingly this seems not to be the case for AcHz.

Further work is in progress to confirm the role of Hz as well as AcHz in INH-induced hepatitis.

ACKNOWLEDGEMENT The authors wish to thank Prof. S. Iguchi, Faculty of Pharmacy and Pharmaceutical Sciences, Fukuyama University for his encouragement of our study. We are also greatful to Dr. M. Hirata, Shionogi Research Laboratories, Shionogi and Company, Ltd. for his helpful comments on the experiments, and to Ms. R. Deya for her technical assistance.

REFERENCES

(Received November 17, 1983)