Novel Fluorogenic Substrates Containing Bimane System for Microdetermination of Angiotensin I Converting Enzyme

Eisuke Sato,* Satoko Nishikawa and Yuichi Kanoka

Faculty of Pharmaceutical Sciences, Hokkaido University, Kita-12, Nishi-6, Kita-ku, Sapporo 060, Japan. Received June 13, 1988

As a sensitive fluorometric assay for the activity of angiotensin converting enzyme, bimane-peptides containing tryptophan, i.e., 1,7-dioxo-2,5,6-trimethyl-1H,7H-pyrazolo[1,2-a]pyrazol-3-yl-methylmethylcarbonyl-glycyl (or l-phenylalanyl)-l-tryptophyl-l-leucine (or l-proline), were synthesized and shown to be potent fluorogenic substrates for the micro-determination of angiotensin I converting enzyme activity.

Keywords 1,7-dioxo-2,3,5,6-tetramethyl-1H,7H-pyrazolo[1,2-a]pyrazole; tryptophan; intramolecular quenching; fluorogenic substrate; fluorometric enzyme assay; angiotensin I converting enzyme

In the course of exploring sensitive fluorometric assays for amidase activity of hydrolytic enzymes such as subtilisin, we have established the usefulness of 7-amoino-4-methylcoumarin and its amide derivatives as practical fluorogenic substrates. Novel applications of 7-amino-4-nitro-2-oxa-l,3-diazole as a fluorogenic amine and 7-amino-coumarin-4-methanesulfonylic acid as a water-soluble fluorogenic amine were also proposed. 1-3,4,5 1,7-Dioxo-2,3,5,6-tetramethyl-1H,7H-pyrazolo[1,2-a]pyrazole (bimane) has been introduced as the first member of a new class of highly fluorescent compounds. 6 We have recently reported an application of bimane to prepare fluorogenic substrates for assay of hydrolytic enzymes such as chymotrypsin, aminopeptidase and carboxypeptidase. 6

Angiotensin I converting enzyme (ACE) is a dipeptidyl carboxypeptidase [EC 3.4.15.1] that cleaves the C-terminal dipeptide of substrates containing a free carboxy group, and participates in the renin–angiotensin system of blood pressure regulation. ACE activity has been assayed by several techniques. A synthetic substrate, hippuryl-histidyl-leucine, is commonly utilized. Free hippuric acid generated enzymatically can be assayed spectrophotometrically, or the histidyl-leucine dipeptide can be measured fluorometrically after reaction with o-phthalaldehyde (OPA). 7 Several substrates which change their fluorescence intensities after cleavage by ACE have been reported. Such “intramolecularly quenched” fluorogenic substrates are: p-nitrobenzoylcarbonyl-l-tryptophylglycine, 8 o-aminobenzoylglycyl-p-nitro-l-phenylalanyl-l-proline, 9 and dansyl-glycyl-p-nitro-l-phenylalanine. 10

We wish to report here a novel, rapid and sensitive spectrofluorometric assay of ACE using the bimane system as a substrate. The C-terminal amino acid of angiotensin I is leucine, and C-terminal proline is not susceptible to carboxypeptidase A. For these reasons, two types of substrates which have leucine or proline at the C-terminus of the peptide were designed. Phenylalanine was also chosen for the amino acid at the P₁ site of substrates, as the P₁ site of angiotensin I is occupied by phenylalanine. Bimane substrates 1a—1d and a standard compound 1f for fluorescence measurement were synthesized by the active ester method from bimane-thiomethylcarbonyl N-hydroxy-succinimide ester 11 and the corresponding peptides (for 1a—1d) or phenylalanine (for 1f). Synthesis of the other standard compound (1e) was reported in the preceding paper. 1

The fluorescence of the bimane group is quenched by the tryptophan incorporated in the substrate, and cleavage at the amino side of tryptophan liberates the bimane moiety, thus leading to a marked increase in fluorescence which can be continuously detected. The relative fluorescence intensities of 1a—1d are 0.13, 0.17, 0.20 and 0.15, respectively, with respect to 1e (for 1a and 1b) or 1f (for 1c and 1d) (excitation at 399 nm, emission at 483 nm)

Kinetic parameters of 1a—1d for ACE were obtained by continuous spectrofluorometric assay, and the results are listed in Table I. In order to compare the characteristics of the bimane substrates with those of previously reported fluorogenic substrates (4—6), the kinetic parameters of 4—6 were also measured with the same ACE.

Although the k_{cat} values for 1a—1d are comparable to the values for 3, 5, 6, the values of K_m for 1a and 1b are smaller than the value for 3, and comparable to the values for 4, 5 and 6. The K_m values for 1c and 1d are smaller than

<table>
<thead>
<tr>
<th>Substrate</th>
<th>K_m (m)</th>
<th>k_{cat} (s⁻¹)</th>
<th>k_{cat}/K_m (m⁻¹ s⁻¹)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1a</td>
<td>1.7×10^{-4}</td>
<td>1.2</td>
<td>7.0×10^3</td>
</tr>
<tr>
<td>1b</td>
<td>3.6×10^{-4}</td>
<td>1.7</td>
<td>4.6×10^3</td>
</tr>
<tr>
<td>1c</td>
<td>5.9×10^{-5}</td>
<td>3.1</td>
<td>5.2×10^4</td>
</tr>
<tr>
<td>1d</td>
<td>2.9×10^{-5}</td>
<td>2.5</td>
<td>8.7×10^3</td>
</tr>
<tr>
<td>1f</td>
<td>1.3×10^{-3}</td>
<td>5.0</td>
<td>3.9×10^3</td>
</tr>
<tr>
<td>Hip-Gly-l-His-l-Leu (3)</td>
<td>9.0 $\times 10^{-4}$</td>
<td>—</td>
<td>—</td>
</tr>
<tr>
<td>Z(NO₂)-Gly-l-Trp-Gly (4)</td>
<td>1.9 $\times 10^{-4}$</td>
<td>1.5</td>
<td>7.7 $\times 10^4$</td>
</tr>
<tr>
<td>Azb-Gly-l-Trp-NO₂(3)-l-Pro (5)</td>
<td>4.2 $\times 10^{-4}$</td>
<td>4.1</td>
<td>9.6 $\times 10^4$</td>
</tr>
<tr>
<td>Dns-Gly-l-Trp-Gly(3)-l-Trp (6)</td>
<td>1.7 $\times 10^{-3}$</td>
<td>5.0</td>
<td>3.9×10^3</td>
</tr>
</tbody>
</table>

a ACE (EC 3.4.15.1): Specific activity, 2.2 units/mg protein. b Hip, N-benzozyglycyl; Abz, o-aminobenzoyl; Dns, dansyl. c Literature value.

© 1989 Pharmaceutical Society of Japan
Because of these advantages, these bimane substrates are expected to be potent fluorescent substrates for the micro-determination of ACE activity. Further application of these substrates to biochemical studies or clinical diagnoses, including monitoring of therapy with antihypertensive drugs such as captopril (which acts by inhibiting ACE) or monitoring or elevated serum ACE level in sarcoidosis, are being examined.

Experimental

Melting points were determined with a Yawato MP-21 melting point apparatus and are uncorrected. Infrared (IR) spectra were measured with a JASCO IRA-1 spectrophotometer. Optical rotations were obtained with a JASCO DIP-4 polarimeter. Ultraviolet (UV) spectra were measured with a Hitachi 200-10 spectrophotometer. Fluorescence spectra were recorded with a Hitachi 650-60 fluorescence spectrophotometer.

General Procedure for the Preparation of Substrate (1) To a stirred solution of 0.6 mmol of the corresponding tripeptide (or amino acid) and 101 mg (1.2 mmol) of sodium bicarbonate in 20 ml of water, 190 mg (0.5 mmol) of 1,7-dioxo-2,5,6-trimethyl-1H,7H-pyrazolo[1,2-a]pyrazolo[3,4-d]pyrimidine-3-yl-methylthiomethaneacarbonyl (ester bismane-succinimide ester) in 10 ml of acetone was added. After being stirred overnight at room temperature, the solution was concentrated to about two-thirds of the original volume under reduced pressure, diluted with 30 ml of water, and then washed twice with ethyl acetate. The aqueous solution was acidified with concentrated hydrochloric acid, then extracted with ethyl acetate. The extract was washed with water and dried over anhydrous sodium sulfate.

1,7-Dioxo-2,5,6-trimethyl-1H,7H-pyrazolo[1,2-a]pyrazolo[3,4-d]pyrimidine-3-yl-methylthiomethaneacarbonyl-glycyl-l-tryptophyl-l-leucine (1a) Obtained from ethyl acetate by condensation as a pale yellow fine powder of mp 190—195 C. 227 mg, 71% IR (Nujol): 1730, 1650, 1635 cm⁻¹. [α]D² = -11.1° (c = 0.738, DMF). Anal. Caled for C₂₇H₂₄N₄O₂S: C, 57.48; H, 6.07; N, 12.97; S, 4.95. Found: C, 57.35; H, 6.13; N, 12.76; S, 4.76.

1,7-Dioxo-2,5,6-trimethyl-1H,7H-pyrazolo[1,2-a]pyrazolo[3,4-d]pyrimidine-3-yl-methylthiomethaneacarbonyl-glycyl-l-tryptophyl-l-proline (1b) Obtained from ethyl alcohol-ethyl acetate by condensation; 162 mg, 52% IR (Nujol): 1730, 1625 cm⁻¹. [α]D² = -17.6° (c = 1.04, DMF). Anal. Caled for C₂₀H₁₈N₃O₂S: C, 56.24; H, 5.66; N, 13.12; S, 5.00. Found: C, 56.53, H, 5.63; N, 13.03; S, 5.17.

1,7-Dioxo-2,5,6-trimethyl-1H,7H-pyrazolo[1,2-a]pyrazolo[3,4-d]pyrimidine-3-yl-methylthiomethaneacarbonyl-phenylalaniny-l-tryptophyl-l-proline (1c) Obtained from methanol-ethyl acetate by condensation as a pale yellow powder of mp 156—166°C (dec.). 220 mg, 60%. IR (Nujol): 1730, 1650 cm⁻¹. [α]D² = -0.42° (c = 0.497, DMF). Anal. Caled for C₃₁H₂₄N₄O₄S: C, 61.10; H, 6.20; N, 11.25; S, 4.29. Found: C, 61.04; H, 5.96; N, 11.16; S, 4.40.

1,7-Dioxo-2,5,6-trimethyl-1H,7H-pyrazolo[1,2-a]pyrazolo[3,4-d]pyrimidine-3-yl-methylthiomethaneacarbonyl-phenylalaniny-l-tryptophyl-l-proline (1d) Obtained from the solution of the above substrate. The peptide dissolved in water (20 ml) and dimethyl sulfoxide (30 ml) as a cosolvent was treated with the ester. 1d was obtained as a pale yellow powder from ethyl acetate by condensation, mp 153.5—160°C. 259 mg, 73%. IR (Nujol): 1740, 1640, 1605 cm⁻¹. [α]D² = -0.27° (c = 0.275, DMF). Anal. Caled for C₃₂H₂₅N₅O₅S: C, 60.80; H, 5.79; N, 11.50; S, 4.39. Found: C, 60.64, H, 5.62; N, 11.21; S, 4.50.

1,7-Dioxo-2,5,6-trimethyl-1H,7H-pyrazolo[1,2-a]pyrazolo[3,4-d]pyrimidine-3-yl-methylthiomethaneacarbonyl-phenylalaniny (1f) Prepared from 40 mg (0.24 mmol) of phenylalanine and 76 mg (0.20 mmol) of bimane-succinimide ester. Recrystallization from acetone-petroleum gave pale yellow needles of mp 169—170°C. 63 mg, 61%. IR (Nujol): 3300, 1725, 1630, 1615, 1600 cm⁻¹. [α]D² = -0.15° (c = 0.213, DMF). Anal. Caled for C₁₅H₁₆N₄O₄S: C, 58.73; H, 5.40; N, 9.79; S, 7.45. Found: C, 58.61; H, 5.31; N, 9.67; S, 7.40.

Assay Procedure for ACE with Substrates 1a—1d a) Kinetic Parameter (Kₐ and Kₑₐ) Measurement: A solution of ACE (50 μl) was prepared at 9.5 x 10⁻⁴ M-1 cm⁻¹ concentration of ACE was estimated from the optical density at 280 nm based on a molar absorptivity of 204000 m⁻¹ cm⁻¹ and a molecular weight of 130000 (20). ACE, 134.51, from rabbit lung (Sigma Chem. Co.); Specific activity, 2.2 units/mg protein with hippuryl-l-histidyl-l-leucine; one unit of enzyme activity is the amount required to catalyze the formation of 1.0 μmol of hippuric acid per min at 37°C. To this solution, 30—100 μl of the substrate solution [1.91 x 10⁻⁷ M for 1d, 25% dimethyl sulfoxide (DMSO) (final concentration of DMSO was 1.2%) in 50 mM Tris—HCl buffer (pH 8.0) containing 300 μM NaCl and
2.0 ml of buffer solution were added, and the increase in emission at 483 nm (appearance of Bim–SCH₂CO–L-Phe–OH, emission at 399 nm) was measured. Rates of hydrolysis were established from the rate of increase in fluorescence intensity based on the fluorescence intensities of various concentrations of standard bimane derivative (I). Kinetic parameters for the hydrolysis were obtained from Lineweaver-Burk plots. Kinetic parameters for other substrates (Ia–Ic) were also obtained by similar procedures.

b) Linear Relation of Fluorescence Intensity vs. Enzyme Concentration: A solution (5–200 µl) of ACE (2.2 × 10⁻⁴ unit/ml) in buffer solution was added to a solution of 2.0 ml of buffer solution and 20 µl (1.91 × 10⁻⁴ M; 2.5% DMSO, finally 0.023% DMSO) of substrate (Ia) (final concentration: 4.30 × 10⁻⁵ M) at 37°C, and measurement was carried out in the manner described in a).

References