NEW TRITERPENOID SAPOGENOLS FROM ABRUS CANTONIENSIS (I)¹

Takashi TAKESHITA, Shuichi HAMADA and Toshihiro NOHARA*
Faculty of Pharmaceutical Sciences, Kumamoto University, 5-1 Oe-honmachi, Kumamoto 862, Japan

New five triterpenoid sapogenols, designated abrisapogenols B, E, D, F and G (1-5) were obtained from the hydrolysate of the crude saponin fraction of Abri Herba, the whole plants of Abrus cantoniensis Hance (Leguminosae). Their structures were determined by spectroscopic and X-ray analysis.

KEYWORDS Abri Herba; Abrus cantoniensis; Leguminosae; triterpenoid sapogenol; oleanene derivative; cantoniensisistriol; sophoradiol; soyasapogenol; kudzusapogenol; abrisapogenol

In the course of our systematic studies on the constituents of Pueraria lobata Ohwi (Leguminosae), we found the occurrence of the oleanene glucosides² in Puerariae Radix and P. Flos, and reported that they were effective for hepatic injury induced with CCl₄.³ In connection with this pharmacological activity and as a part of our programs of the studies on the ingredients of the leguminous plants, we have surveyed the constituents of Abri Herba (Chiku-ts'ao in Chinese), the whole plants of Abrus cantoniensis Hance (Leguminosae), which is a native herb in Kwangtung and Kwangsi provinces of China and has long been used in South China and Southeast Asia as a folk medicine for the treatment of infectious hepatitis.⁴ Its efficacy towards this disease has been substantiated by clinical trials and has become well known in recent years.⁵ Chiang et al. reported that the crude saponin obtained from the title plants is effective against liver disease in pharmacological tests.⁶ And from the hydrolysate of the methanolic extract, they isolated a new sapogenol, cantoniensisistriol (6), along with the known ones, sophoradiol (7),⁷ soyasapogenol A (8)⁸ and soyasapogenol B (9),⁸ and elucidated the structure of 6.⁵ Now, we have also recognized that the crude saponin originating from the methanolic extract of this plant is effective for the hepatic injury induced with CCl₄.⁹ The present paper deals with the isolation and structural elucidation of five new sapogenols, named abrisapogenol B, E, D, F and G (1-5), together with the identification of 6, 7, 8, 9 and kudzusapogenol A (10) obtained from the hydrolysate of the biologically active crude saponin.

Abrisapogenol B (1), C₃₀H₅₀O₄, colorless needles, mp 278-280°C, [a]D +26.1°(pyridine), showed the presence of a total of thirty carbons, in which four oxygenated carbons [δ 64.4 (t), 73.0 (t), 75.6 (d) and 80.1 (d)] and two sp² carbons [δ 122.4 (d) and 144.9 (s)] were included in the ¹³C-NMR spectrum.¹⁰ 1 is a typical oleanane-type sapogenol. The ¹H-NMR spectrum of the corresponding tetraacetate (II), C₃₈H₇₈O₈, colorless needles, mp 156-157°C, [a]D +61.3°(CHCl₃), displayed signals due to one acetoxymethyl (δ 4.14, 4.37, ABq, J=11.5 Hz) and two methane protons (δ 4.59, dd, J=5.5, 10.6 Hz and 4.71, t, J=3.5 Hz) assignable to the H₂-24, H-3₂ and H-22α, respectively, by comparing them with those of the acetate of 9. The signal of the remaining acetoxymethyl group (δ 3.67, 3.73, ABq, J=10.6 Hz) could be reasonably assigned to the H-29 by comparison with that (δ 3.68, 3.77, ABq, J=10 Hz, H₂-29) of 3β,24,29-triacetoxylcodel-12-ene¹¹ derived from azukisapogenol. Therefore, the structure of 1 was represented as 3β,22β,24,29-tetrahydroxyolean-12-ene.¹²

© 1989 Pharmaceutical Society of Japan
Abrisapogenol E (2), C$_{30}$H$_{50}$O$_{4}$, colorless needles, mp 249-252°C, [α]$_D$ +67.7° (methanol), exhibited peaks due to the characteristic fragmentations at m/z 250 (C$_{16}$H$_{26}$O$_2$), 232 (C$_{16}$H$_{24}$O), 219 (C$_{15}$H$_{23}$O) and 201 (C$_{15}$H$_{21}$) originating from the A/B ring, and at m/z 250 (C$_{16}$H$_{26}$O$_2$), 232 (C$_{16}$H$_{24}$O), 219 (C$_{15}$H$_{23}$O) and 201 (C$_{15}$H$_{21}$) originating from the D/E ring by retro Diels-Alder fission in the EI-MS. These peaks also appeared in 1. 2 was then converted to the acetate (12), colorless needles mp 283-285°C, [α]$_D$ +72.2° (CHCl$_3$). Signals of one acetoxyethyl group (δ 4.11 and 4.37, ABq, δ=10.8 Hz) and two methine protons (δ 4.59, dd, δ=5.1, 10.8 Hz and δ 4.66, t, δ=3.3 Hz) in the 1H-NMR spectrum of 12 could be easily assigned to the H$_2$-24, H-3α and H-22α, respectively. The other one (δ 3.99 and 4.14, ABq, δ=10.4 Hz) was ascribable to the H$_2$-30 because the 13C-NMR spectra of both 12 and 11 provided analogous chemical shifts except for those of C-8 (+1.0), -15 (+2.5), -18 (-1.8), -21 (+1.0), -22 (+3.3), -29 (-35.2) and -30 (+33.3). Consequently, the structure of 2 was expressed as 3β,22β,24,30-tetrahydroxyolean-12-ene. This compound was identical with the sapogenol of Wisteria saponin B obtained almost at the same time from the roots of Wisteria brachybotrys Sieb. et Zucc. by Konoshima et al.

Abrisapogenol D (3), C$_{30}$H$_{50}$O$_{4}$, was obtained as colorless needles, mp 290-291°C, [α]$_D$ +76.7° (pyridine), the acetate of which, colorless needles, mp 222-224°, [α]$_D$ +76.5° (CHCl$_3$), showed signals of 1H, t (δ=3.3 Hz) at δ 4.66, and 1H, dd (δ=4.0, 7.7 Hz) at δ 4.50 ascribable to the H-22α and H-3α respectively in the 1H-NMR spectrum. The remaining signal of the ABq (δ=11.0 Hz) at δ 3.99 and 4.12 was assigned to the acetoxyethyl group at C-30 by comparing it with that of 12. Hence, the structure of 3 could be determined to be 3β,22β,30-trihydroxyolean-12-ene.

Abrisapogenol F (4), C$_{30}$H$_{48}$O$_{2}$, colorless needles, mp 66-67°C, [α]$_D$ +15.4° (CHCl$_3$), showed the presence of the carbonyl group in the IR (1696 cm$^{-1}$) and 13C-NMR (δ 216.5) spectra. The EI-MS provided a peak due to the D/E ring, indicating the location of the carbonyl group on the D/E ring. This compound was thus identified with 3β-hydroxyolean-12-en-22-one derived from 7. Its 13C-NMR chemical shifts supported this structure.

Abrisapogenol G (5), C$_{30}$H$_{50}$O$_{2}$, colorless needles, mp 231-233°C, [α]$_D$ -5.3° (CH$_3$OH),
showed signals due to two oxygenated carbons at δ 78.0 and 79.0, and one tetra-substituted double bond at δ 131.7 and 137.3 in the 13C-NMR spectrum, thus it appeared that the double bond shifted into an unusual position. Another signal due to a proton (1H, dd, J=7.5, 9.4 Hz) adjacent to the hydroxyl group, except for that of the H-3a (1H, dd, J=5.1, 11.0 Hz), could not be assigned. Therefore, the single crystal of 5 was subjected to X-ray analysis. Crystal data were C39H50O22H2O, M.W.=640.7, monoclinic P21, a=15.199(2), b=12.115(2), c=7.244(1) Å, β=95.75(1)°, V=1327.1 Å3, Z=2, Dx=1.152 g/cm3, F(000)=512, λ = 0.518 mm−1, Cu-Kα=0.5418 Å. Refinements of 1934 observed reflections converged at R=0.058. The structure was established as shown in the formulae.

The structural analysis of the other substances are under investigation.

ACKNOWLEDGEMENTS The authors are grateful to Prof. Isao Kitagawa, Faculty of Pharmaceutical Sciences, Osaka University and Dr. Takao Konoshima, Kyoto Pharmaceutical University, for their valuable suggestions.

REFERENCES AND NOTES

1) Part 13 in the series of the studies on the leguminous plants.
10) This 13C-NMR spectrum was measured in pyridine-d5 and other 1H- and 13C-NMR spectra in this article were in CDCl3.
13) 13C-NMR Data of 12: δ 38.4, 26.7, 80.1, 43.8, 55.9, 19.3, 33.5, 41.0, 47.6, 36.7, 23.6, 123.0, 143.1, 41.6, 28.3, 26.2, 38.4, 41.4, 41.4, 36.2, 39.8, 77.8, 23.5, 65.4, 15.5, 16.6, 25.8, 29.6, 32.9, 70.0 (C1-C30).
14) 13C-NMR Data of 11: δ 38.8, 26.8, 80.1, 43.3, 55.9, 19.3, 33.0, 40.0, 47.6, 36.8, 23.0, 122.8, 143.4, 41.6, 25.8, 26.8, 38.5, 43.2, 41.0, 36.4, 38.8, 74.5, 23.6, 65.4, 15.5, 16.7, 26.1, 29.9, 68.1, 16.7 (C1-C30).
16) 13C-NMR Data of 4: δ 38.6, 27.2, 78.9, 38.8, 55.3, 18.3, 32.7, 39.6, 47.6, 37.0, 23.5, 123.7, 141.6, 41.9, 25.3, 28.1, 47.6, 47.6, 46.7, 32.0, 50.8, 216.5, 27.2, 15.5, 15.5, 16.8, 25.4, 29.7, 34.1, 20.5 (C1-C30).

(Received December 26, 1988)