The Effect of Scopolarone, a Coumarin Derivative Isolated from the Chinese Crude Drug Artemisia Capillaris Flos, on the Heart

Johji YAMAHARA,* GOTO KOBAYASHI, Hisashi MATSUDA, Taiichi KATAYAMA and Hajime FUJIMURA
Kyoto Pharmaceutical University, Misasagi, Yamashina-ku, Kyoto 607, Japan. Received October 24, 1988

In the present study, scopolarone isolated from Artemisia Capillaris Flos has been investigated to determine its pharmacological properties on the heart. Scopolarone was found to cause the increase in coronary flow and heart rate, but did not affect cardiac output, left ventricular pressure or left ventricular work in the isolated perfused heart. Scopolarone at 25 mg/kg and 50 mg/kg, p.o., had a marked inhibitory effect on the ST wave depression. Consequently it is suggested that scopolarone has antianginal action.

Keywords Artemisia capillaris; Capillaris Flos; scopolarone, working heart perfusion; antianginal action; vasopressin; ST wave depression

Capillaris Flos is the bud of Artemisia capillaris THUNB. (Compositae). As a Chinese crude drug, it has been used since antiquity for chologagic, antipyretic, antiinflammatory and diuretic purposes in jaundice, inflammation of the liver and cholecystitis. In the course of screening test to find vasodilating drugs from among natural products, the extracts of herbal medicines were examined for their inhibitory effect on norepinephrine-induced contraction. The effect of acetone extract of Artemisia capillaris and scopolarone (6,7-dimethoxycoumarin) on vascular smooth muscles was described in previous reports.1,2 In the present experiments, the effects of scopolarone on isolated perfused heart and on vasopressin-induced experimental angina pectoris were studied in order to examine further the action of scopolarone on the cardiovascular system. First, so as to examine the effect of scopolarone on cardiac functions, perfusion experiments were conducted using isolated rat heart.

Experimental

Analysis Using Working Heart Perfusion Model13 The working heart perfusion method was used in the experiments. Wistar male rats (Shizuoka Laboratory Animal Center) weighing 300-350 g were pretreated with heparin (500 IU/kg, i.p.). Rats were then killed by means of a blow on head, the heart was immediately excised and the heart movement was stopped in ice-cold perfusion medium. The heart was then fixed to perfusion equipment through a cannula attached to the aorta and Langendorff reversed perfusion was started. Under Langendorff perfusion, the blood was washed out, and the lung and other attached tissues were removed, and the left atria was cannulated from the pulmonary vein. After confirming that the perfusion fluid was not leaking from the left atria, working heart perfusion was started. During the working heart perfusion, a preload of approximately 14 cm H$_2$O was maintained on the left atria and an after load of about 90 cm H$_2$O was kept on the aorta. The perfusion medium was a modified Krebs Henseleit solution, kept at 37 ℃ and aerated with a 95% O$_2$, 5% CO$_2$ gas mixture. The composition of the solution was as follows: NaCl 118.0, KCl 4.7, MgSO$_4$ 1.2, KH$_2$PO$_4$ 1.2, CaCl$_2$ 2.55, NaHCO$_3$ 25.0, glucose 11.0 ethylenediaminetetraacetic acid (EDTA) 0.5 mM (pH 7.4).

Following a 40 min stabilization period, the aortic flow (AF) and the coronary flow (CF), based on the flow from the pulmonary artery, were measured by the use of an electromagnetic blood flowmeter (Nihon Koden MFR 1100). The left ventricular pressure (LVP) was measured by a pressure transducer (Gould Statham P23ID) attached to an injection needle inserted into the left ventricular cavity through the apex, and the heart rate was periodically measured by a tachometer (Nihon Koden). In addition, the left ventricular work (LVW) was calculated according to the formula of Kannengiesser et al.4 based on the cardiac output (CO), which is the sum of AF and CF, heart rate (HR) and LVP.

$$LVW (mJ/s) = \text{pressure power} \times \text{kinetic power}$$

with $P_r = \text{Peak systolic pressure (mmHg)}, CO = \text{cardiac output (ml/min)}, A = \text{internal cross-sectional area of aortic cannula (cm)}, d = \text{diameter of perfusate (mm)}, T = \text{time (ms)}, T_e = \text{excretion (ml)}$.

The cardiac function following stabilization (approximately 40 min) was taken as normal and the effect of the test drug was measured during a 10 min perfusion with a fixed concentration of the test drug. Scopolarone was dissolved in a small amount of acetone (the solvent was confirmed to have no effect on heart perfusion).

Effects of Scopolarone on Experimental Anginal Model Examination Using Vasopressin-Induced ST Wave Depression11 A male Donryu strain rat (Nihon Rat) weighing 150-200 g was given a test drug suspended in 1% carboxymethyl cellulose (CMC-Na). Fifty minutes later, the rat was anesthetized with pentobarbital sodium (50 mg/kg, i.p.). Immediately thereafter, an electrocardiogram was recorded from lead II of the electrocardiograph (ECG II) (Nihon Koden) and this was taken as the cardiogram in the normal state. Ten minutes thereafter, that is 60 min after the oral administration of the test drug, vasopressin (0.5 IU/kg) (Sigma) was intravenously (i.v.) administered from the tail vein and ECG II was recorded from 0 to 6 min. Heart rate was also recorded simultaneously from a tachometer connected to ECG II. As a control, 1% CMC-Na alone was orally administered, and in the case of nitroglycerin (GTN) alone, the rat was pretreated with GTN (i.p.) for 5 min before i.v. injection.

Drugs and compounds used for the experiments were as follows: nifedipine (Sigma), pentobarbital sodium (Nembutal, Daiabot), nitroglycerin (Millisrol, Sanwa Chemical), vasopressin (Sigma). All other chemicals were purchased from Wako Junyaku Kogyo (Inc).

Results

The cardiac functions after the stabilization prior to drug perfusion were as follows; AF, 26.0 ± 0.8 min; CF, 21.0 ± 0.5 ml/min; CO, 46.7 ± 1.0 ml/min; LVP, 46.9 ± 2.4 mmHg; HR, 292.1 ± 11.0 beats/min. Taking these values as 100, the values during the 5 min perfusion in the control group (0.1% acetone) were 95.6 ± 1.6 for CO, 101.9 ± 1.1 for CF, 89.1 ± 0.8 for LVP, 103.4 ± 1.4 for HR and 85.0 ± 1.1% for LVW. During the perfusion with scopolarone at 10−4 M, the values were; CO, 92.5 ± 2.1; CF, 112.7 ± 4.1; LVP, 85.0 ± 0.9; HR, 115.5 ± 2.4; LVW, 77.6 ± 2.2%. There were significant increases in the levels of CF and HR. Further, during the perfusion with 10−6 M nifedipine, the parameters were; CO, 63.0 ± 10.8; CF, 136.9 ± 4.6; LVP, 68.2 ± 9.8; HR, 45.0 ± 13.1; LVW, 45.2 ± 10.6%, showing a significant increase in CF and significant decreases in CO, LVP, HR and LVW (Figs. 1-3).

Vasopressin (0.5 IU/kg, i.v.) markedly depressed the ECG II ST wave (maximal depression of 4.84 ± 0.6 mm in 3 min). Pretreatment of the rat for 60 min with scopolarone at
25 and 50 mg/kg significantly inhibited the depression of the ECG ST wave induced by vasopressin, in a dose-dependent manner. Nifedipine, a dihydropyridine Ca2+-blocker used here as a reference drug, at 1 mg/kg and GTN, a nitrous acid compound, at 3 mg/kg i.p. (5 min of pretreatment) had significant inhibitory actions. However, dipyridamole at 30 mg/kg did not show any inhibition and actually increased the ST wave depression compared with the control (Figs. 4 and 5).

Discussion

Increase in intracellular free Ca2+ concentration is thought to be due to Ca2+ influx through the sarcolemmal membrane and Ca2+ release from intracellular Ca2+ stores (mainly sarcoplasmic reticulum: SR). As for Ca2+ influx through the sarcolemma, there are two types of channels involved in active influx, i.e., voltage-dependent Ca2+ channels (V.D.C.) activate by membrane depolarization and receptor-operated Ca2+ channels (R.O.C.) activated by activation of receptors not necessarily accompanied with depolarization.6 Passive influx of Ca2+ also occurs.6 Verapamil and nifedipine, organic Ca2+-blockers, inhibit mainly Ca2+-influx through V.D.C. and GTN and sodium nitroprusside (nitrocompounds) inhibit Ca2+-influx through R.O.C. as well as Ca2+ release from SR.7 In isolated vascular smooth muscles, scoparone has been shown to cause a parallel shift of the concentration-response curve only for NE,11 and to inhibit extracellular Ca2+ influx through R.O.C. and Ca2+ release from Ca2+ stores, in a manner relatively similar to GTN.31 In the present experi-
ment using isolated rat perfused heart in order to examine the effect of scopolamine on cardiac function, scopolamine significantly increased CF, though the effect was weaker than that of nifedipine, a Ca\(^{2+}\)-blocker whose mechanism of action is different from that of scopolamine. However, the degree of reduction in the levels of CO, LVP and LVV by scopolamine was much less than that by nifedipine.

In the working heart perfusion method used in the present experiments, due to the cannulation of the pulmonary vein, the perfusion fluid is moved by the heart, working as a pump, from the left atria through the left ventricle to the aorta in the physiological sequence. Further, the approximate work applied externally by the heart can be estimated in this method, which is therefore superior to the Langendorff method of reversed perfusion from the aorta.

In the present experiments, GNT, whose mechanism of action is relatively similar to that of scopolamine, was not used as the reference drug, since GNT is not only unstable in the heart but also possesses an NO\(_2\) moiety which may bind to polyethylene tubing used in the working heart perfusion equipment. However, according to Sakamoto et al., GNT selectively dilates relatively large coronary vessels and therefore it only slightly increases CF in the normal heart as compared to experimental disease models. Therefore, based on the pattern and the magnitude of the vasodilating action of scopolamine, the increase in CF caused by scopolamine at 10\(^{-4}\) M to 112.7 ± 4.1% is due to the coronary dilatory action of scopolamine. It is known that in cardiac muscles, there are no R.O.C., but only V.D.C. Nifedipine, a Ca\(^{2+}\)-blocker, inhibited CO, LVP, HR and LVV, due to inhibition of slow channels in the cardiac muscle cells. The inhibitory effect of scopolamine, on CO, LVP and LVV, however, is small, since the effect of scopolamine is negligible on Ca\(^{2+}\)-influx through V.D.C.

In the present experiment, the antianginal action of scopolamine was examined in vasopressin-induced ST wave depression in Donryu strain rats according to the method of Hatano et al. Vasopressin, an antidiuretic hormone, at high concentrations strongly contracts coronary vessels especially, thereby causing ST wave depression of the lead II electrocardiogram in myocardial ischemia. Scopolamine, however, at 25 and 50 mg/kg, p.o., had a marked inhibitory effect on the ST wave depression, in a dose-dependent manner. Based on the results in in vitro experiments, this may be due to the inhibition of coronary vasoconstriction, but it is more likely to be due to a decrease in afterload through vasodilatation of resistance vessels and reduction of venous return through vasodilation of veins, both of which act synergistically to reduce cardiac work load. Even though the effect of scopolamine was 50 times weaker than that of the Ca\(^{2+}\)-blocker, nifedipine, it is interesting to note that scopolamine in an oral administration showed a significantly greater inhibitory action as compared to GNT, whose mechanism of action in vitro is relatively similar to that of scopolamine. In addition, the fact that dipyridamole, developed as a coronary vasodilator, had no effect in the present experiment may be due to the so-called coronary steal syndrome, in which dipyridamole mainly dilates healthy small coronary arteries leading to a decreased blood flow in the ischemic region of large coronary arteries. These results indicate that scopolamine, as a vasodilator, possesses antianginal action.

References and Notes
5) N. Hatano, K. Nakatsui, I. Nose and M. Shimizu, Oyo Yakuri, 19, 311 (180).