Synthesis and Pharmacological Properties of Azido Derivatives of 1,5-Benzothiazepine Ca Antagonist

Hiroshi Narita, Mitsunori Gaiho, Tatsuo Suzuki, Hideyasu Kurossawa, Hirozumi Inoue and Taku Nagao

Biological Research Laboratory, Organic Chemistry Research Laboratory, Tanabe Seiyaku Co., Ltd., Kagawishi 2-2-50, Toda-shi, Saitama 335, Japan. Received July 27, 1989

Since azido derivatives of 1,5-benzothiazepine Ca antagonist available for photoaffinity labeling are required for further studies of voltage-sensitive Ca channels, we synthesized 3-(p-azidobenzoyloxydeacetyl)- and 3-(4-azidobutyryloxydeacetyl)-diltiazem, and studied their pharmacological properties. Both azido compounds showed similar relaxing actions to diltiazem in K⁺-depolarized dog arteries. They also showed a similar increasing action to diltiazem, but less potent, on the coronary and vertebral blood flow in the anesthetized dog. Moreover, their negative inotropic effects in the guinea pig papillary muscle were similar to or slightly more potent than that of diltiazem under physiological conditions, but were less potent when studied in K⁺ depolarizing solution. A radioligand binding study in rat skeletal muscle microsomes revealed that the azido derivatives had similar properties to diltiazem, but the non-specific binding of 3-(p-azidobenzoyloxydeacetyl)-diltiazem was too high to allow estimation of its K_D and B_{max} values. In conclusion, we synthesized azido derivatives of diltiazem which were considered to share a common binding site on the voltage-dependent Ca channel with diltiazem in skeletal muscle microsomes and in vascular smooth muscle.

Keywords: diltiazem; 1,5-benzothiazepine; calcium antagonist; azido derivative; photoaffinity labeling; radioligand binding; 3-(p-azidobenzoyloxydeacetyl)-diltiazem; 3-(4-azidobutyryloxydeacetyl)-diltiazem

Recent developments in molecular biology have led to elucidation of the primary structures of various kinds of receptors and ion channels as well as their functions and three dimensional structures. Concerning the voltage-dependent L type Ca channel, Tanabe et al. elucidated its primary structure using the T system of skeletal muscle. 1) 1,4-Dihydropyridine derivatives and phenylalkylamine derivatives as well as 1,5-benzothiazepine derivatives are representative compounds acting on the voltage-dependent L type Ca channel. The results of radioligand binding studies indicated that these three chemical groups had individual binding sites on the voltage-dependent Ca channel, 2,3) but at the same time each group allosterically influences the binding of the others. 4,5) Furthermore, 1,4-dihydropyridines and phenylalkylamines were reported to bind to different sites on the same z subunit of the Ca channel protein by the technique of photoaffinity labeling 6-7) using their azido derivatives, azidopine 8) and LU49888 9) 1,5-Benzothiazepine derivatives are also speculated to have their own binding site on the same z subunit, but the absence of compounds available for photoaffinity labeling prevents further investigation. 10)

Therefore we have synthesized two azido derivatives of 1,5-benzothiazepine Ca antagonist expected to be useful for photoaffinity labeling and studied their pharmacological and radioligand binding properties. Since these two compounds, 3-(p-azidobenzoyloxydeacetyl)-diltiazem (azidobenzoyl-diltiazem) and 3-(4-azidobutyryloxydeacetyl)-diltiazem (azidobutyryl-diltiazem), exhibited similar pharmacological and radioligand binding properties to diltiazem, they were considered to share a common binding site on the voltage-dependent Ca channel with diltiazem. However, non-specific binding of azidobenzoyl-diltiazem was too high to allow estimation of its K_D and B_{max} values. Thus azidobutyryl-diltiazem seemed to be better probe for photoaffinity labeling.

Experimental

The chemical structures of azidobenzoyl-diltiazem and azidobutyryl-diltiazem as well as diltiazem are shown in Fig. 1. Both compounds have acyloxy substituents carrying azido group at position 3 of the diltiazem structure, and are 2S,3S isomers.

Drugs

Diltiazem (Tanabe Seiyaku Co., Ltd.) was used as a reference compound. Diltiazem and azidobutyryl-diltiazem were dissolved in deionized water for the in vitro experiment and in 0.9% NaCl solution for the in vivo experiment. Azidobenzoyl-diltiazem was dissolved in deionized water and diluted with 0.9% NaCl solution or deionized water. The volume of administration was adjusted to 0.01 or 0.03 ml/kg and to 0.1 ml in the in vivo and in vitro experiments, respectively.

For the radioligand binding study, [3H]nitrendipine (spec. act. 2.73 TBq/mmol) was purchased from New England Nuclear, and [methyl-3H]diltiazem (spec. act. 5.99 TBq/mmol) was purchased from Amersham. [N-Methyl-3H]azidobenzoyl-diltiazem (spec. act. 2.66 TBq/mmol) and [N-methyl-3H]azidobenzoyl-diltiazem (spec. act. 3.07 TBq/mmol) were prepared by Amersham from our synthesized azido compounds. They were dissolved in 10% ethanol solution at the concentration of 10^{-4} M and diluted with deionized water.

Other chemicals were purchased from conventional commercial sources.

Synthesis of Azido Derivatives

2S,3S-3-(4-Azidobenzoyloxy)-5-[2-(dimethylaminoo)ethyl]-2,3-dihydro-2-(4-methoxyphenyl)-1,5-benzothiazepin-4(5H)-one (2): Dicyclohexycarbodiimide (1.03 g) was added to a mixture of 2S,3S-5-[2-(dimethylaminoo)ethyl]-2,3-dihydro-3-hydroxy-2-

![Fig. 1. Structures](image)

* Indicates the position of radiolabeling.

© 1990 Pharmaceutical Society of Japan
(4-methoxyphenyl)-1,5-benzothiazepin-4(5H)-one (4) (1.5 g), 4-azidobenzonic acid (890 mg), and 1-hydroxybenzotriazole hydrate (150 mg) in dimethylformamide (DMF) (40 ml) under ice-cooling. The reaction mixture was stirred at room temperature for 48 hr, poured into ice-water, and extracted with AcOEt. The extracts were combined, washed with water, 5% NaHCO₃, and saturated aqueous NaCl successively, dried over Na₂SO₄, and concentrated. The residual oil was purified by column chromatography (silica gel, eluted with CHCl₃-MeOH- EtOH (98:1:1)) and the obtained oil (1.25 g) was converted into the methanesulfonate and recrystallized from iso-PrOH-isoo-Pr₂O to give 2-methanesulfonate-hydrate colorless needles, mp 115–117.5°C (770 mg, yield: 30.3%). Anal. Caled for C₂₃H₂₂N₆O₂S·CH₃SO₂H·H₂O: C, 53.24; H, 5.27; N, 11.09; S, 10.15. Found: C, 53.17; H, 5.27; N, 11.07; S, 10.09. IR ν(CO) cm⁻¹: 3700, 3430, 2410, 2260, 1730, 1670, 1600. ¹H-NMR (CDCl₃) δ: 1.97 (2H, s, H₂O), 2.75 (3H, s, CH₃SO₂H), 2.94 (6H, brs, NCH₃), 3.1–3.9 (2H, m, CH₂N), 3.84 (3H, s, OCH₃), 4.1–4.7 (2H, m, CH₂N), 5.12 (1H, d, J = 7.9 Hz), 5.32 (1H, d, J = 7.9 Hz), 6.7–7.8 (12H, m, aromatic H). [α]₀ = –20.0° (c = 0.155, MeOH).

Chart 1

Fig. 2. Increasing Actions of Test Compounds on the Coronary (Panel A. Baseline: 38.2 ± 8.4 ml/min) and Vertebral (Panel B. Baseline: 27.8 ± 3.2 ml/min) Blood Flow in the Anesthetized Dog

Drugs were administered intravenously. Symbols and vertical bars indicate means ± S.E.M. of 4 or 5 experiments. ○, diltiazem; △, azidobenzyl-diltiazem; ◆, azidobutryl-diltiazem.
Fig. 3. Vasorelaxing Actions of Test Compounds on the Isolated and K\(^+\)-Depolarized Canine Coronary (Panel A) and Basilar (Panel B) Artery
Symbols and vertical bars indicate means ± S.E.M. of 3 or 4 experiments. ○, diltiazem; △, azido benzoyl-diltiazem; ●, azidobutyryl-diltiazem.

Fig. 4. Negative Inotropic Actions of Test Compounds in the Normal PSS (○, Δ, □) and K\(^+\) Depolarizing PSS (●, △, ■) in the Isolated Guinea Pig Papillary Muscle
Symbols and vertical bars indicate means ± S.E.M. of 3 to 7 experiments. ○, diltiazem; △, azidobenzoyl-diltiazem; ■, azidobutyryl-diltiazem.

(MC626, Graphitec, Tokyo). The resting tension was adjusted to 0.8—1.3 g and the tissue was equilibrated for at least 1 h. Drugs were cumulatively administered at the tonic phase of K\(^+\) contraction (40 mm).

Diltiazem exhibited concentration-dependent relaxing action at concentrations of 10\(^{-7}\) M or more on the coronary artery and at concentrations of 3 × 10\(^{-8}\) M or more on the basilar artery (Fig. 3). Diltiazem relaxed both preparations by 90% at the concentration of 3 × 10\(^{-5}\) M.

Both azido compounds showed quite similar vasorelaxing actions to diltiazem in these preparations.

Negative Inotropic Action
Ten male guinea pigs (Hartley strain, Shizuoka Laboratory Animal Center) weighing 296—396 g were killed by means of a blow on the head and the hearts were excised. The left ventricular papillary muscle was immediately isolated and suspended in an organ bath containing 10 ml of oxygenated PSS (95% O\(_2\), 5% CO\(_2\), 30°C). Isometric tension was measured and recorded as mentioned before. The resting tension was adjusted to approximately 1 g and contraction was induced by field electric stimulation of 1 Hz for 5—10 ms at supramaximal voltage (DPS-10, Dia Medical, Tokyo). Cumulative administration of the drug was started after the contraction became stable.

The negative inotropic action of the drug was also studied under K\(^+\) depolarization. In this experiment, KCl (final concentration, 25 mm) was added after the contraction had become stable and then isoproterenol was added 10—20 min later to induce a Ca\(^{2+}\) dependent contraction. Drug administration was performed as mentioned above.

Negative inotropic actions of the test compounds in the normal PSS and in the depolarizing PSS are shown in Fig. 4. When compared in terms of EC\(_50\) values, the negative inotropic actions of azido benzoyl-diltiazem and azidobutyryl-diltiazem were about two and about three times stronger than that of diltiazem in normal PSS, respectively. However, azidobenzoyl-diltiazem and azidobutyryl-diltiazem were about one half and about one-seventh as potent as diltiazem in the depolarizing solution, respectively.

Receptor Binding Assay in Skeletal Muscle Microsomes
Skeletal muscle microsomes were prepared from 17 male rats weighing 250—410 g (SD strain, Charles River Japan) by the method of Glosmann et al.\(^{11}\) The binding study was performed under the incubating condition of 2°C and 3 h as described by Schwartz et al.\(^{12}\)

As shown in Fig. 5, Scatchard analysis of [\(^3\)H]azidobutryl-diltiazem binding indicated a dissociation constant (K\(_d\)) of 85.9 ± 12.9 nM and the maximal number of binding sites (B\(_max\)) of 3.6 ± 0.2 pmol/mg protein in rat skeletal muscle microsomes. These values were in close agreement with the binding parameter of [\(^3\)H]diltiazem in the same preparation (data not shown).

We also studied [\(^3\)H]azidobenzoyl-diltiazem under the same conditions, but failed to identify the specific binding because of its nonspecific binding.

Nonlabeled diltiazem and its azido derivatives displaced the binding of [\(^3\)H]diltiazem to skeletal muscle microsomes (Fig. 6). There were no apparent differences among their inhibitory actions, and none of the Hill slopes for inhibition differed significantly from unity. Similar results were obtained from the experiment using skeletal muscle microsomes and [\(^3\)H]azidobutryl-diltiazem as a ligand (data not shown).

Influence on [\(^3\)H]Nitrendipine Binding
The effects of the test compounds on [\(^3\)H]nitrendipine binding to rat cerebral cortex synaptosomes (SD strain, 260—330 g, N = 8, Charles River Japan) were studied as described by Yamamura et al.\(^{13}\) at 37 or 25°C, for 60 min duration.
Fig. 7. Effects of Diltiazem and Azido Derivatives on [3H]Nitrendipine Binding to the Rat Cerebral Cortex Synaptosomes at 37°C (), and 25°C ().

The data represents means of 3 or 4 experiments, each done in duplicate. , , azidobenzoyl-diltiazem; azidobutyryl-diltiazem; nitrendipine.

This study was performed in a dark room.

As shown in Fig. 7, diltiazem, at 37°C, increased the [3H]nitrendipine binding at concentrations of 10^{-7} M or more. This enhancement was the largest at the concentration of 10^{-5} M, and reached approximately 180% of the baseline value. At the same temperature, both azido derivatives showed inhibitory actions on [3H]nitrendipine binding and they almost completely inhibited the binding at the highest concentration of 10^{-4} M. At the temperature of 25°C, diltiazem still slightly enhanced [3H]nitrendipine binding, but azido derivatives exhibited similar actions to those observed at 37°C.

Discussion

As mentioned before, we synthesized azidobenzoyl-diltiazem and azidobutyryl-diltiazem and studied their pharmacological and radioligand binding properties with the aim of employing them as tools for investigation by photoaffinity labeling of the binding site of 1,5-benzothiazepine Ca antagonists on the voltage dependent Ca channel. The results were as follows.

1) Both azido compounds demonstrated similar increasing actions to diltiazem, though slightly less potent, on dog coronary and vertebral blood flow when administered by intraarterial injection.

2) Both azido compounds showed quite similar vaso-relaxing actions to diltiazem in the isolated and K^{+}-depolarized canine coronary and basilar arteries.

3) Although their negative inotropic actions were stronger than that of diltiazem in the normal PSS, they were less potent negative inotropic agents than diltiazem when studied in the K^{+} depolarizing PSS, in which the cardiac voltage-dependent Ca channel was activated.

4) Both azido compounds shared a common binding site with diltiazem in skeletal muscle microsomes. Although the K_D and B_{max} of [3H]azidobenzoyl-diltiazem could not be estimated because of its nonspecific binding, [3H]azidobutyryl-diltiazem demonstrated similar properties to diltiazem.

Thus, our azido compounds were considered to have pharmacologically similar properties to diltiazem in the vascular smooth muscle and to share common binding sites with diltiazem in the skeletal muscle microsomes.

But they exhibited distinctive properties in cardiac muscle. Moreover, diltiazem and its azido derivatives affected [3H]nitrendipine binding to rat cerebral cortex synaptosomes in a different fashion, suggesting distinct allosteric effects on the nitrendipine binding. These findings suggest a difference among the voltage dependent Ca channels in various tissues as well as among 1,5-benzothiazepine derivatives. Schwartz et al. reported the presence of an organ difference in the z_1 subunit of the voltage-dependent Ca channel which Ca antagonists bind to. Our results could be explained in terms of such a subtype difference of z_1 subunit.

In conclusion, our azido compounds were considered to share a common binding site on the voltage-dependent Ca channel with diltiazem, because they demonstrated basically similar pharmacological radioligand binding characteristics to diltiazem.

Acknowledgment We thank Miss Keiko Yamashita, Mr. Takashi Yamaguchi and Mr. Kohki Kikawa for their technical assistance.

References