Amino Acids and Peptides. XL. Synthesis of Ac–Tyr–Val–Ala–Asp–MCA Using Newly Developed Acetylating Reagent\(^1,2\)

Hiroaki Taguchi, Kenichi Hirano, Toshio Yokoi, Keiichi Asada, and Yoshio Okada*

Faculty of Pharmaceutical Sciences, Kobe-Gakuen University, Nishi-ku, Kobe 651-21, Japan.

Received February 6, 1995; accepted April 26, 1995

2-Acetoxy-3-benzyl-5-methyl-6-isobutylpyrazine was prepared by cyclization of H–Phe–Leu–CH\(_2\)Cl, followed by acetylation with acetic anhydride. This pyrazine derivative can react with amino groups of amino acids or peptides to produce acetyl amino acids or acetyl peptides without acetylation of hydroxy group of Tyr, Ser and Thr. Using this acetylation reagent, Ac–Tyr–Val–Ala–Asp–MCA, which is a specific substrate of the interleukin-I (IL-I) processing enzyme, was prepared.

Key words acetylation reagent; pyrazinone derivative; acetoxypprazine derivative; Ac–Tyr–Val–Ala–Asp–MCA; specific substrate; interleukin-I processing enzyme

For the synthesis of biologically active peptides or specific substrates for measurement of enzyme activities, acetylation of an amino group is sometimes required. Various kinds of acetylation reagents such as acetyl chloride, acetyl imidazole and acetic anhydride, have been employed for the purpose. 2-Acetoxy-3,6-dialkyl pyrazines have also been applied to acetylation of amines with good results.\(^3\) However, synthesis of 2(1H)-pyrazinone derivatives is not simple.\(^4\)–\(^6\) This paper deals with a novel synthetic procedure for 2-acetoxypprazine derivatives and evaluation of their acetylation reactivity towards amino acids or peptides and their utility for the synthesis of Ac–Tyr–Val–Ala–Asp–MCA, which is a specific substrate of the IL-I processing enzyme.\(^7\)

Previously, we reported a convenient synthetic procedure for 2(1H)-pyrazinone derivatives.\(^8\),\(^9\) 2-Acetoxypprazine derivatives were prepared, according to Fig. 1. Boc–Phe–Leu–CH\(_2\)Cl\(^{10}\) was prepared by the coupling of Boc–Phe–OH and H–Leu–CH\(_2\)Cl by the mixed anhydride method.\(^11\) After removal of the Boc group with HCl/dioxane, HCl·H–Phe–Leu–CH\(_2\)Cl in MeOH was refluxed for a short time to afford 3-benzyl-5-methyl-6-isobutyl-2(1H)-pyrazinone, which was treated with acetic anhydride to give the desired compound, 2-acetoxy-3-benzyl-5-methyl-6-isobutylpyrazine (1). 2-Acetoxy-3,5-dimethyl-6-isobutylpyrazine (2) was also prepared similarly, starting with Boc–Ala–Leu–CH\(_2\)Cl.

First of all, the reactivity of the above two compounds (1, 2) with aniline was examined in various solvents (DMF, dioxane, DCM, benzene), because a suitable acylating method of aniline was required for the preparation of acylanilide derivatives. As an example, the method used to determine the reaction rate between compound (1) and aniline in benzene will be described. The decrease of 1 and increase of acylanilide and liberated 3-benzyl-5-methyl-6-isobutyl-2(1H)-pyrazinone were monitored by HPLC. The peak areas corresponding to 1 and acylanilide were plotted as a function of time, as shown in Fig. 2, and the half time (\(t_{1/2}\)) was determined. The half times of the reaction of 1 with aniline in various solvents are summarized in Table 1 in comparison with those of compound 2.

The reactions of the 2-acetoxypprazine derivatives (1, 2) with aniline proceeded slightly in DMF, dioxane or DCM \(120\ h (2—7\%))\,\) but in benzene, the reactions were dramatically accelerated (half times were 7.5 and 12 h, respectively). It is possible that the activation of 2-acetoxypprazine derivatives occurs by intramolecular general base catalysis and thus is favored in a non-polar solvent, benzene.\(^12\) However, the above reactions are very slow in DCM and dioxane. Benzene might have the effect of increasing the electron density at the amino group of aniline. These results showed that our acetylation reagents were not suitable for acetylation of the amino group of

\[\text{Fig. 1. Synthetic Route to 2-Acetoxypprazine Derivatives}\]

* To whom correspondence should be addressed.

© 1995 Pharmaceutical Society of Japan
aromatic derivatives.

Next, the reactivity of 1 with primary amines of H-Phe-OME, H-Tyr-OME and H-Val-Thr-OBzl was examined in DMF (polar solvent) and DCM (non polar solvent). As shown in Fig. 3, the decrease of peak areas of 1 and the increase of peak areas of Ac-Val-Thr-OBzl were plotted as a function of time. The half times of the reactions of 1 with primary amines in DMF or DCM are summarized in Table 2 in comparison with those of 2. Both 1 and 2 reacted rapidly with the amino group of amino acids or peptide in DMF, but were not so reactive in DCM. Compound 1 is a crystalline compound while 2 is an oily material and 1 reacted with amino groups faster than 2. Therefore, 1 seems more suitable for use as an acetyllating reagent in DMF. Moreover, the reaction of 1 or 2 with Boc-Tyr-OMe or Boc-Val-Thr-OBzl for 5 d did not afford the O-Ac derivatives, although both amino and hydroxyl functions were acetylated with acetic anhydride, as summarized in Table 2. These results suggest that protection of the hydroxyl group of an amino acid is not required when 2-acetoxypyrazines are employed for N-acetylation of peptides.

Next, Ac-Tyr-Val-Ala-Asp-MCA, which is a specific substrate of the IL-1 processing enzyme, was prepared by a conventional solution method according to the route shown in Fig. 4.

First of all, 7-amino-4-methylcoumarin, which was prepared as reported by Zimmerman et al., was coupled with Boc-Asp(Obz)-OH by a mixed anhydride method to afford Boc-Asp(Obz)-MCA. After removal of the Boc group by TFA treatment, Boc-Ala-OH, Boc-Val-OH and Boc-Tyr(Obz)-OH were coupled successively by the mixed anhydride method to afford Boc-Tyr(Obz)-Val-Ala-Asp(Obz)-MCA. After removal of the Boc group, acetylation was carried out by using 1 to afford Ac-Tyr(Obz)-Val-Ala-Asp(Obz)-MCA quantitatively. The
protected acetyl tetrapeptide was hydrogenated over a palladium catalyst to give the desired peptide, Ac- Tyr-Val-Ala-Asp-MCA. Homogeneity of this peptide was ascertained by HPLC, elemental analysis and amino acid analysis. Ac-Tyr-Val-Ala-Asp-MCA was successfully employed for measurement of the enzymatic activity of the IL-1 processing enzyme.

Experimental

Melting points were determined on a Yanagimoto micro-melting point apparatus and are uncorrected. Optical rotations were measured with an automatic polarimeter, model DIP-360 (Japan Spectroscopic Co.) and the [α]D values are given in 10−3 deg cm2 g−1 1H (400, 500 MHz) and 13C (100, 125 MHz) NMR spectra were recorded on either a Bruker AM400 or ARX500 spectrometer. Chemical shift values are expressed as ppm downfield from tetramethylsilane used as an internal standard (δ-value). The J values are given in Hz. Mass spectra were determined on a Hitachi M-2000 mass spectrometer using the electron impact (EI) technique. Amino acid composition of an acid hydrolysate (6 n HCl, 110°C for 48 h) was determined on a Hitachi K-200 SN (Kyowa Seimitsu Co.), On TLC (Kieselgel G, Merck), Rf0, Rf1, Rf2, and Rf and Rf values refer to the systems of CHCl3, MeOH and AcOEt (90:8:2), CHCl3 and MeOH (1:1), AcOEt and hexane (1:2) and CHCl3, AcOEt and MeOH (30:19:1).

Boc-Ala-Leu-ChlCl A mixture of a mixed anhydride [prepared from Boc-Ala-OH (0.69 g, 3.70 mmol), NMM (0.44 ml, 4.0 mmol) and isobutyl chloroformate (0.48 ml, 3.72 mmol) as usual] in THF (30 ml) was added to an ice-cold solution of H-Leu-ChlCl-HCl (prepared from Boc-ChlCl-HCl (0.97 g, 3.7 mmol) and 5.1 n HCl/dioxane (3.6 ml, 18.5 mmol) as usual) in DMF (30 ml) containing NMM (0.44 ml, 4.0 mmol). The reaction mixture was stirred at 0°C for 1 h and then at room temperature overnight. After removal of the solvent, the residue was extracted with AcOEt. The extract was washed with 10% citric acid, 5% NaHCO3 solution over Na2SO4, dried with anhydrous MgSO4 and evaporated. Petroleum ether was added to the residue to add crystals, which were collected by filtration and recrystallized from EtOAc, yield 232 mg (89.9%), mp 109–110°C, Rf 0.17. MS m/z: 180 M+, 1H-NMR (CDCl3, 500 MHz): δ ppm 13.3 (1H, br.s, NH), 2.44 (2H, d, J=7.4, 6-CH2-Chl(CH3)), 2.42 (3H, s, 2-CH3), 2.28 (3H, s, 5-CH3), 2.03 (1H, m, 6-CH2-Chl(CH3)), 0.98 (6H, d, J=6.6, 6-CH2-Chl(CH3)). 13C-NMR (CDCl3, 125 MHz): δ ppm 157.9 (quart, C-2), 153.1 (quart, C-3), 134.3 (quart, C-6), 129.6 (quart, C-5), 39.0 (sec, 6-CH2-Chl(CH3)) 28.9 (prim, 6-CH2-Chl(CH3)), 22.3 (tert, 6-CH2-Chl(CH3)) 19.6 (prim, 3-CH3), 18.7 (prim, 5-CH3). Anal. Calcd. For C19H14N2O2·C6: 66.6; H: 8.95; N: 15.5. Found: C: 66.5; H: 8.89; N: 15.5.

2-Acetoxy-3-benzyl-5-methyl-6-isobutylpyrazine (1) 3-Benzyl-5-methyl-6-isobutyl-2-(1H)-pyrazinone (323 mg, 1.3 mmol) was refluxed in acetic anhydride (10 ml) for 1 h. After removal of the excess acetic anhydride, the residue was extracted with ether. The extract was washed with water, dried over MgSO4 and evaporated to give the title compound as a yellow crystalline solid, yield 370 mg (95.4%), mp 37–38°C, Rf 0.71, Rf0 0.79. MS m/z: 298 M+, 1H-NMR (CDCl3, 400 MHz): δ ppm 7.28–7.20 (3H, m, 3-CH3), 4.06 (2H, s, 3-CH2-ph), 2.62 (2H, d, J=7.3, 6-CH2-Chl(CH3)), 2.29 (3H, m, 3-CH3), 2.11 (1H, nonet, J=6.7, 6-CH2-Chl(CH3)), 0.94 (6H, d, J=6.6, 6-CH2-Chl(CH3)). Anal. Calcd. For C24H23N2O2·HCl·C6: 67.5; H: 7.42; N: 9.39. Found: C: 72.5; H: 7.7; N: 9.39.

2-Acetoxy-3-dimethyl-6-isobutylpyrazine (2) 3-Dimethyl-6-isobutyl-2-(1H)-pyrazinone (314 mg, 1.75 mmol) was heated under reflux in acetic anhydride (20 ml) for 1 h. After removal of the excess acetic anhydride, the residue was extracted with ether. The extract was washed with water, dried over MgSO4 and evaporated to give the title compound as a yellow oily material, yield 314 mg (80.4%), Rf 0.3. MS m/z: 222 M+. 1H-NMR (CDCl3, 400 MHz): δ ppm 7.3 (1H, d, J=7.3, 6-CH2-Chl(CH3)), 2.55 (3H, s, 2-OCH3), 2.40 (3H, s, 3-CH3), 2.37 (3H, s, 5-CH3), 2.21 (1H, nonet, J=6.7, 6-CH2-Chl(CH3)), 0.95 (6H, d, J=6.6, 6-CH2-Chl(CH3)). General Procedure for Examination of Reactivity of 2-Acetoxyopyrazine Derivatives with Aniline 2-Acetoxy pyrazine derivative (0.5 mmole) and aniline (0.5 mmole) were dissolved in benzene (4 ml), DMF (4 ml), DCM (5 ml), and EtOAc (8 ml). After anhydrous sodium sulfate was washed with water (4 ml), the reaction mixture was allowed to stand at room temperature for 10 min. An aliquot (0.05 ml) was taken periodically and diluted with MeOH (0.3 ml), and 0.01 ml of the diluted solution was analyzed with an HPLC apparatus [column, μ-bondapack C18 (3.9×150 mm); eluent, A=0.05% TFA/CH3CN, B=0.05% TFA/H2O (linear gradient in 25 min) A/B: 90/10–10/90; flow rate, 1.0 ml/min; detection, 220 nm]. The peak areas corresponding to 1 or 2 and anactinid were plotted as a function of time and the half time (t1/2) was determined (see Fig-2, Table 1).

General Procedure for Examination of Reactivity of 2-Acetoxyopyrazine Derivatives with Primary Amine of Peptide 1) Synthesis of standard sample, Ac-Val-Thr-OBzl: H-Val-Thr-OBzl HCl (prepared from Boc-Val-Thr-OBzl (300 mg, 0.61 mmol) and 5.0 nHCl/dioxane (3.65 ml) as usual) was washed over silicagel (100 mg, 0.85 ml) and dissolved in MeOH (10 ml). The mixture was refluxed for 2 h. After removal of the solvent, the residue was extracted with CH2Cl2. The extract was washed with water, dried over MgSO4 and evaporated. Petroleum ether was added to the residue to add crystals, which were collected by filtration and recrystallized from EtOAc, yield 190 mg (93.1%), mp 184–185°C, [α]D25 49.5° (c=1.0, MeOH), Rf0 0.71. Anal. Calcd. For C19H14N2O2·C6: 66.5; H: 7.4; N: 15.5. Found: C: 66.5; H: 7.51; N: 8.00.

2) Compound 1 (12.8 mg, 0.05 mmol) and an amino acid methyl ester or a dipeptide benzyl ester (0.05 mmol) were dissolved in DMF (4 ml) or DCM (4 ml). The reaction mixture was stirred at room temperature. An aliquot (0.05 ml) was taken periodically and diluted with MeOH (0.3 ml), and 0.01 ml of the diluted solution was analyzed with an HPLC apparatus [column, μ-bondapack C18 (3.9×150 mm); eluent, A=0.05% TFA/CH3CN, B=0.05% TFA/H2O (linear gradient in 25 min) A/B: 90/10–10/90; flow rate, 1.0 ml/min; detection, 220 nm]. The peak areas corresponding to 1 and acetylated amino acid or peptide were plotted as a function of time and the half time (t1/2) was determined (see Fig-2 and Table 2).

General Procedure for Examination of Reactivity of 2-Acetoxyopyrazine Derivatives with Hydroxy Group of Thr and Tyr Compound 1 (26 mg, 0.12 mmol) and Boc-Tyr-Ome (35.4 mg, 0.12 mmol) or Boc-Val-Thr-OBzl (50.9 mg, 0.12 mmol) were dissolved in DMSO (2 ml). The reaction mixture was stirred at room temperature. An aliquot (0.05 ml) was taken...
periodically and diluted with MeOH (0.3 ml), and 0.01 ml of the diluted solution was analyzed with an HPLC apparatus [column, μ-bondasephere C18 (3.9 × 150 mm); eluent, A = 0.05% TFA/CH₃CN, B = 0.05% TFA/H₂O (linear gradient in 25 min) A:B = 90:10–10:90; flow rate, 1.0 ml/min; detection, 220 nm]. After 5 d, no 0-acyl derivative was detected. The examination of the reaction of acetylic anhydride with Boc-Tyr-OMe or Boc-Val-Thr-OBzl in DMF was also carried out in the same manner. The results are summarized in Table 2.

**Boc-Asp(OBzl)-MCA** A mixed anhydride [prepared from Boc-Asp(OBzl)-OH (10.0 g, 0.03 mol), NMM (3.30 mol, 0.03 mol) and IBChF (4.02 mol, 0.03 mol) as usual] in THF (50 ml) was added to an ice-cold solution of 7-amino-4-methylcoumarin (1.8 g, 0.01 mol) in DMF (50 ml). The reaction mixture was stirred at 0 °C for 1 h and then at room temperature overnight. After removal of the solvent, the residue was extracted with AcOEt. The extract was washed with 10% citric acid, 5% NaHCO₃ and water, dried over Na₂SO₄ and evaporated. Petroleum ether was added to the residue to afford crystals, which were collected by filtration and purified by silica-gel chromatography (eluents: 2% MeOH/CHCl₃, yield 2 g (41.6%), mp 125–127 °C, [α]D 33.2° (c = 0.1, MeOH). Rf 0.55. Anal. Calc. for C₂₄H₂₃NO₆: C, 65.0; H, 5.87; N, 5.82. Found: C, 64.8; H, 5.8; N, 5.80.

**Boc-Ala-Asp(OBzl)-MCA** A mixed anhydride [prepared from Boc-Ala-OBzl (344 mg, 1.82 mmol), TEA (0.26 ml, 1.82 mmol) and IBChF (0.24 ml, 1.82 mmol) as usual] in THF (10 ml) was added to an ice-cold solution of H-Asp(OBzl)-MCA-TFA [prepared from Boc-Asp(OBzl)-MCA (0.5 g, 1.04 mmol), TFA (0.7 ml) and anisole (0.12 ml, 11 mmol) as usual] in DMF (10 ml) containing TEA (0.15 ml, 1.04 mmol). The reaction mixture was stirred at 0 °C for 0 h and then at room temperature overnight. After removal of the solvent, the residue was extracted with AcOEt. The extract was washed with 10% citric acid, 5% NaHCO₃ and water, dried over Na₂SO₄ and evaporated. Petroleum ether was added to the residue to afford crystals, which were collected by filtration and recrystallized from AcOEt, yield 456 mg (79.6%), mp 100–113 °C, [α]D 25° (c = 0.5, MeOH). Rf 0.56. Anal. Calc. for C₃₁H₂₃NO₈O: C, 66.5; H, 5.2; N, 7.5. Found: C, 67.1; H, 5.7; N, 7.44. Compound was observed as a single peak at the retention time of 15.8 min (column, μ-bondasephere C18 (3.9 × 150 mm); eluent, A = 0.05% TFA/CH₃CN, B = 0.05% TFA/H₂O (linear gradient in 20 min) A:B = 90:10–40:60; flow rate, 1.0 ml/min; detection, 220 nm).

**Acknowledgement**

This work was supported in part by a grant from The Science Research Promotion Fund of the Japan Private School Promotion Foundation.

**References and Notes**


2. All amino acid residues of i-conformation. Standard abbreviations for amino acids, peptides and their derivatives are those recommended by the IUPAC-IUB Commission on Biochemical Nomenclature: Biochemistry, 5, 2485 (1966); ibid., 6, 362 (1967); ibid., 11, 1726 (1972). Other abbreviations used are: IL-4, interleukin-4; Boc, tert-butyloxycarbonyl; OBzl, benzyl ester; OMe, methyl ester; TEA, triethylamine; NMM, N-methylmorpholine; IBChF, isobutyl chloroformate; AcOEt, acetic acid; TFA, trifluoroacetic acid; DCM, dichloromethane; DMF, dimethylformamide; AcOEt, ethyl acetate; THF, tetrahydrofuran; MCA, 7-amino-4-methylcoumarinamide.


