SYNTHESIS OF SOME PEPTIDES CORRESPONDING TO THE ACTIVE REGION OF RANTES FOR CHEMOTAXIS AND EVALUATION OF THEIR ANTI-HUMAN IMMUNODEFICIENCY VIRUS-1 ACTIVITY

Yasuhiro NISHIYAMA, a, Tsutomu MURAKAMI, b Keisuke KURITA, a and Naoki YAMAMOTO b
Department of Industrial Chemistry, Faculty of Engineering, Seikei University, a Musashino-shi, Tokyo 180, Japan and Department of Microbiology, Tokyo Medical and Dental University School of Medicine, b Bunkyo-ku, Tokyo 113, Japan.

Five peptides corresponding to the amino-terminal sequence of RANTES (regulated upon activation, normal T-cell expressed and secreted), which is known to be the critical region for chemotaxis, were synthesized, and their anti-human immunodeficiency virus (HIV)-1 activity was examined to obtain a lead compound useful for the development of chemokine receptor-directed anti-HIV-1 drugs. A decapptide corresponding to positions 1-10 [Ac-(10)Ala-RANTES 1-10)-NH2] showed significant anti-HIV-1 activity. Ac-(10)Ala, 11-Ala-RANTES 5-14)-NH2 was also active, but less potent than the former. Other peptides corresponding to the positions 6-14, 7-14, and 8-14 did not show anti-HIV-1 activity. These results indicate that the sequence 1-10 of RANTES is important for the anti-HIV-1 effect.

KEYWORDS: RANTES; active region; anti-HIV-1 activity; peptide; AIDS

RANTES (regulated upon activation, normal T-cell expressed and secreted), one of the CC-chemokines, is a chemotactic and activating agent for a variety of leukocytes including T-lymphocytes.1) It has been reported that RANTES, macrophage inflammatory protein (MIP)-1α, and MIP-1β inhibit infection with human immunodeficiency virus (HIV) in vitro by interacting with CC-chemokine receptor-5 (CCR-5), a coreceptor for macrophage-tropic HIV-1.2-4) It has also been demonstrated that the initiation of signal transduction from CCR-5 is not required for viral entry,5) and therefore, the occupancy of suitable sites of CCR-5 with low-molecular-weight ligands may possibly be effective for the treatment of HIV-1 infected individuals. To develop such a novel class of anti-HIV-1 agents, structural requirements for the anti-HIV-1 activity of chemokines should first be clarified. Recently, a study on RANTES-related peptides revealed that the amino-terminal region of RANTES was critical for receptor-binding and chemotactic activity.6) This finding prompted us to

\[
\begin{array}{c}
\text{Ser-Pro-Tyr-Ser-Ser-Asp-Thr-Thr-Pro-Cys-Cys-Phe-Ala-Tyr-Ile-Ala-Arg-Pro-Leu-Pro} \\
\text{Arg-Ala-His-Ile-Lys-Glu-Tyr-Phe-Thr-Ser-Gly-Lys-Cys-Ser-Asn-Pro-Ala-Val-Val} \\
\text{Phe-Val-Thr-Arg-Lys-Asn-Arg-Gln-Val-Cys-Ala-Asn-Pro-Glu-Lys-Lys-Trp-Val-Arg-Glu} \\
\text{Tyr-Ile-Asn-Ser-Leu-Glu-Met-Ser}
\end{array}
\]

Fig. 1. Amino Acid Sequence of Human RANTES

* To whom correspondence should be addressed. © 1997 Pharmaceutical Society of Japan
study the role of this region for anti-HIV-1 activity. This communication deals with the synthesis and anti-HIV-1 activity of five peptides related to the active region for chemotaxis of RANTES.

First, Ac-(10Ala-RANTES 1-10)-NH\textsubscript{2} \textbf{1} and Ac-(10Ala,11Ala-RANTES 5-14)-NH\textsubscript{2} \textbf{2}, in which the original Cys at position 10 and positions 10 and 11 were replaced with Ala to prevent disulfide formation, were synthesized, and their anti-HIV-1 activity was examined. These peptides have been synthesized by the multipin method for the chemotaxis study described above, but used without purification and sufficient characterization.6 To obtain purified and fully characterized peptides, we synthesized these peptides by the conventional solid-phase method using 9-fluorenylmethoxycarbonyl (Fmoc) chemistry.7 The desired sequences were constructed on Rink amide resin8 by N-benzotriazolyl-oxytris-(dimethylamino)-phosphonium hexafluorophosphate9 coupling in the presence of 1-hydroxybenzotriazole and N,N-diisopropylethylamine. After N-terminal acetylation with acetic anhydride, the protected peptide-resins were treated with trifluoroacetic acid containing 5% anisole, and the crude products thus obtained were purified to homogeneity by preparative reversed-phase HPLC. The m/z values on FAB-MS of the purified products were consistent with the theoretical values.10

The anti-HIV-1 activity of these peptides was examined in comparison to that of recombinant RANTES (rRANTES). Phytohemagglutinin-activated peripheral blood mononuclear cells were infected with macrophage-tropic HIV-1 virus (JRCSF) and cultured in the presence or the absence of synthetic peptides. After 7 days, the amount of soluble HIV-1 p24 in each culture supernatant was determined by ELISA. Details of the anti-HIV-1 assay were described in a previous paper.11 The anti-HIV-1 activity of peptides was represented as % decrement of p24 from the amount in the absence of peptides, and is shown in Table 1. Peptide \textbf{1} was thus confirmed to exhibit significant anti-HIV-1 activity. Peptide \textbf{2} was also active, but less potent than \textbf{1}. These results clearly indicate the importance of the amino-terminal region of RANTES for anti-HIV-1 activity.

To discuss which amino acid sequence is important for anti-HIV-1 activity, \textit{i.e.,} the sequence before the first disulfide bridge (1-9) or the one after that (10-14), Ac-(10Ala,11Ala-RANTES 6-14)-NH\textsubscript{2} \textbf{3}, Ac-(10Ala,11Ala-RANTES 7-14)-NH\textsubscript{2} \textbf{4}, and Ac-(10Ala,11Ala-RANTES 8-14)-NH\textsubscript{2} \textbf{5} were synthesized, purified, and characterized10 in a similar manner. Peptides \textbf{3}, \textbf{4}, and \textbf{5} were then assayed and found to exhibit no appreciable anti-HIV-1 activity at the concentrations examined, as listed in Table 1. These data provide evidence that the amino-terminal sequence before the disulfide plays an important role in anti-HIV-1 activity.

| Table 1. Anti-HIV-1 Activity of RANTES Amino-terminal Peptides |
|---|----|----|
| | 10 nM | 100 nM |
| Ac-SPYSSDTTPA-NH\textsubscript{2} \textbf{1} | 54 | 64 |
| Ac-SDTTPAFAFAY-NH\textsubscript{2} \textbf{2} | 15 | 45 |
| Ac-DTTPAFAFAY-NH\textsubscript{2} \textbf{3} | 0 | 12 |
| Ac-TTPAFAFAY-NH\textsubscript{2} \textbf{4} | 0 | 0 |
| Ac-TPAFAFAY-NH\textsubscript{2} \textbf{5} | 0 | 0 |
| rRANTES | 46 | 88 |
We have thus clarified that the amino-terminus 1-10 of RANTES, which is known to be the critical region for chemotaxis, is also important for anti-HIV activity. This finding is seemingly inconsistent with the anti-HIV-1 activity of RANTES 9-68, which lacks the first eight amino acids.\(^{12}\) However, the anti-HIV-1 activity of RANTES\(^{2}\) and aminooxypentane (AOP)-RANTES,\(^{13}\) which have the amino-terminal sequence, is higher than that of RANTES 9-68. Moreover, RANTES 19-28, 21-30, 23-32, 41-50, and 43-52 are known to exhibit moderate chemotactic activity.\(^6\) This strongly suggests the existence of multiple receptor-binding domains in RANTES. Some of them might contribute to inhibition of viral entry, and the amino-terminus 1-10 is probably one of them. Ac-(\(^{10}\)Ala-RANTES 1-10)-NH\(_2\) 1 is the smallest anti-HIV-1 chemokine analogue at present and would be an important lead compound for the development of chemokine receptor-directed anti-HIV-1 agents. For this purpose, further structure-activity relationship (SAR) study to reduce chemotactic activity and to enhance anti-HIV-1 activity is required. Systematic SAR study of peptides 1 is now under way in our laboratories.

ACKNOWLEDGMENTS

We are grateful to Asahi Chemical Industry Co. Ltd. for FAB-MS measurement. This work was supported in part by a Grant-in-Aid for Scientific Research on Priority Areas (09258221) from the Ministry of Education, Science, Sports and Culture of Japan.

REFERENCES AND NOTES

10) 1, m/z 1066 (MH\(^{+}\)); 2, m/z 1084 (MH\(^{+}\)); 3, m/z 997 (MH\(^{+}\)); 4, m/z 882 (MH\(^{+}\)); 5, m/z 781 (MH\(^{+}\)).

(Received October 16, 1997; accepted October 31, 1997)