ひび割れを有する鉄筋コンクリートの腐食速度解析モデルの提案

長谷川裕介*1・宮里心一*2・親本俊憲***3・横関康祐*4

概要：ひび割れを有する鉄筋コンクリートでは、マクロセルが形成され、腐食速度は速いことが、実験および調査により確認されている。本研究では、このマクロセル腐食速度を予測するため、鉄筋のアノード分極曲線、カソード分極曲線、分極抵抗およびコンクリート抵抗をインプットデータとし、腐食速度をアウトプットデータとする解析モデルを構築した。さらに、モデルを検証するため、ひび割れ、湿度および水セメント比をパラメータとし、モルタル供試体を用いた実験を行った。その結果、(1) ひび割れを有する鉄筋コンクリートの腐食速度解析モデルを構築できた。(2) モルタル供試体を用いた実験により、モデルの妥当性を検証できた。

キーワード：塩害、腐食速度解析モデル、ひび割れ、マクロセル、ミクロセル、分極曲線

1. はじめに

多くの鉄筋コンクリート部材は、重要な社会基盤に用いられている。そのため、安全で快適に供用されなければならなが、安価な環境下での耐久性に対する期待も強まる。この背景に、鉄筋コンクリートの長期劣化予測が求められている。ここで、性能規定型設計においては、この様々な劣化を考慮して、長期にわたる性能を考慮する必要がある。したがって現在、コンクリート部材の長期劣化予測が試みられている。2) (2) 今後、鉄筋コンクリート部材の劣化特性が定量的に予測できれば、利用期間中の性能を考慮しながら、材料の設定や断面の設計を行うことができる。

上記の社会的背景の下、塩害の問題に対する劣化予測が可能となった。すなわち、コンクリート内部における塩化物イオンの移動を解析し、腐食発生の時期を予測することが可能となった。2) しかし、このような技術を用いた場合において、さらに腐食速度の特性を考慮する必要がある。これまでは、断面修復などを対象として、異なる部位の材料間で生じるマクロセル腐食を解析するモデルはあった。しかし、ひび割れなどの欠陥を有する部分を対象として、マクロセル腐食速度を解析するモデルの検討は未だ少ない。

以上の背景を踏まえ本研究では、ひび割れを有する鉄筋コンクリート部材に生じる塩化物腐食の速度を予測する基礎的なモデルを提案する。すなわち、鉄筋のアノード分極曲線、カソード分極曲線、分極抵抗およびコンクリート抵抗をインプットデータとする鉄筋軸方向の腐食速度分布をアウトプットデータとする1次元モデルを提案する。そのため、第2章ではモデルの構築を行い、その後3) ではひび割れ、湿度および水セメント比をパラメータとしたモルタル供試体を用いて検証実験を行う。特に3.2では、モデルの適用に活用できることを期待し、これまでの測定例の少なかったモルタル中鉄筋の電気的特性値を明示する。さらに第4章では、ひび割れの有無、湿度および水セメント比をパラメータとして解析値の比較を行い、モデルの工学的価値を確認する。

2. モデルの構築

2.1 はじめに

コンクリート中鉄筋の腐食速度に影響を及ぼす因子の関係を図-1に示す。耐久性設計のために必要となる情報である「腐食速度」を、表-1に示す。またこの「腐食速度」は、狭い範囲でアノードとカソードが連結した腐食反応による「ミクロセル腐食速度」と、広い範囲でアノードとカソードが連結した腐食反応による

*1 金沢工業大学大学院修士課程 工学研究科環境土木工学科工学専攻（正会員） 〒921-8501 石川県石川郡野々市町別所1-7-1
*2 金沢工業大学助手研究員 環境工学科環境土木工学科博士（工学）（正会員） 〒921-8501 石川県石川郡野々市町別所1-7-1
*3 野島建設(株)主任研究員 技術研究所建築生産グループ修士（工学）（正会員） 〒182-0036 東京都調布市世田谷2-19-1
*4 野島建設(株)部長研究員 技術研究所建設生産グループ博士（工学）（正会員） 〒182-0036 東京都調布市世田谷2-19-1
「マクロセル腐食速度」を合計することにより算定できる。次に、これらの「マクロセル腐食速度」と「ミクロセル腐食速度」は、電気化学的に「分極曲線」を用いて算定することができる。ここで分極曲線とは、電位と電流を座標として電極の分極状態を示すものであり、反応物質の量などによって曲線は変化する。例えば、著者らにより測定された塩化物イオン濃度が異なる飽和水酸化カルシウム水溶液中における鉄筋のアノード分極曲線の例を図-2に示す。また、鉄筋の分極抵抗やコンクリート抵抗などのアノードとカソード間の電気抵抗による電位ロスも、考慮しなければならない。以上のことから本研究では、「腐食速度」をアウトプットデータとして解析するため、「アノード分極曲線」、「カソード分極曲線」、「分極抵抗」および「コンクリート抵抗」をインプットデータとするモデルを構築する。

2.2 鉄筋要素の設定と腐食形態の定義
マクロセル腐食速度とミクロセル腐食速度を区別して解析するため、鉄筋要素に分極する。すなわち、図-3に示すように、一部のトキメキ鉄筋は複数の鉄筋要素の組み合わせとして考える。また、アノードとカソードが、単一の鉄筋要素内に存在する場合を「ミクロセル」とし、一方異なる鉄筋要素を経た場合を「マクロセル」とする。

2.3 分極曲線の組合せによる腐食電流の解析方法
アノード分極曲線およびカソード分極曲線の組合せとマクロセル腐食電流およびミクロセル腐食電流の関係を、図-4にて説明する。(a)図に示すとおり、鉄筋要素①はび割れの無いコンクリート内部に存在し、一方鉄筋要素②はび割れと接する部分である。ここで、び割れと接する場合、健全なコンクリート内に有しているが、外部環境から内部鉄筋への塩化物イオンの酸素の供給が増加すると、そのため、塩化物イオンの影響を受けるアノード分極曲線、および酸素供給の影響を受けるカソード分極曲線はともに、鉄筋要素①と鉄筋要素②で異なる。

また、アノード分極曲線とカソード分極曲線の交点が電気化学的平衡状態であり、この電流値で腐食速度は制御される。ここで、(b)図に示すとおり、同一鉄筋要素内にアノードとカソードが形成されるミクロセルの場合、鉄筋要素の分極抵抗に伴う電位ロスを考慮する必要がある。すなわち、アノード分極曲線とカソード分極曲線の交点よりも左側（腐食電流が小さい側）において、式（1）のオーブの法則を満足するミクロセル腐食電流が流れます。

\[E_{\text{cell}} = (R_{\text{cell}} + R_{\text{local}}) \times I_{\text{micro}} \] \(\text{式 (1)} \)

ここで、\(R_{\text{cell}} \)は鉄筋要素②の分極抵抗（Ω）。

図-1 コンクリート中鉄筋の腐食速度に影響を及ぼす因子の関係
（本研究の範囲を対象）

図-2 飽和水酸化カルシウム水溶液中における鉄筋の
アノード分極曲線の測定例

図-3 鉄筋の要素分割と腐食形態（マクロセル・ミクロセル）

図-4 分極曲線と腐食電流の関係
一方、(c)図に示すとおり、異なる鉄筋要素に跨ってアノードとカソードが形成されるマクロセルの場合、鉄筋要素①、②間の分極抵抗やコンクレート抵抗に伴う電位ロスも考慮する必要がある。すなわち、アノード分極曲線とカソード分極曲線の交点よりも左側（腐食電流が小さい側）において、式（2）のオーモの法則を満足するマクロセル腐食電流が流れる。

\[E_{c}^{(1)} - E_{a}^{(1)} = (R_{o}^{(1)} + R_{o}^{(2)} + R_{c}^{(2)}) \times I_{macro} \]

(2)

ここで、\(R_{o}^{(1)} \)は鉄筋要素①の分極抵抗（Ω）、\(R_{o}^{(2)} \)は鉄筋要素②と②間のコンクレート抵抗（Ω）。

なお、以上のように算出した腐食電流について、鉄筋要素iをアノードとし、鉄筋要素jをカソードとする場合を、\(I_{i,j} \)とする。

3. 検証実験

3.1 実験概要

(1) 使用材料と配合

モルタル供試体に使用した材料を表-1に示す。水セメント比は 30% と 50% の 2 水準とし、砂セメント比は 2.5 とした。また、水セメント比が 30% の場合のみ、セメント質量に対して 5.0% の高性能減水剤を添加した。

(2) 供試体概要

供試体の概要を図-5に示す。2.2に示すとおり、鉄筋軸方向に要素分割された腐食電流の解析値と、(5)に示す方法により測定された実測値を比較するため、分割鉄筋を埋設した供試体を用いた。また、一部の供試体では、ひび割れを模擬した欠陥を設けた。ここで、開口幅が 0.4mm あるいは 0.2mm の欠陥を、打設時に厚さ 0.4mm あるいは 0.2mm の半円のプラスチック板を挟み、6 時間後に取り除くことにより作製した。

打設後 24 時間後に脱型し、材齢 28 日まで水中（20℃）において初期養生した。その後、49日間の塩害促進暴露（1 日間の 3%食塩水噴霧 + 2.5 日間の気中放置）を行った。なお、曝露中の温度は 20℃とし、また気中放置の際の相対湿度は 90% と 60% の 2 水準とした。

(3) 実験ケース

実験ケースを表-2に示す。3 水準のひび割れ、2 水準の湿度および 2 水準の水セメント比を設けた。なお、1 水準に対して 1 つの供試体を用いた。

(4) モデルへのインプットデータの測定方法

モデルへのインプットデータとして、「アノード分極曲線」、「カソード分極曲線」、「分極抵抗」および「モルタル抵抗」を測定した。

1) アノード分極曲線の測定方法

Ag/AgCl を参照電極とし、鉄筋要素の電位を 1mV/秒で強制的に変化させ、その時に流れる電流を測定した。

分極曲線の測定方法を図-6に示す。なお、IR ドロップを考慮し、鉄筋表面のみで反応する分極特性に及ぼす分極曲線を求めた。すなわち、鉄筋要素表面での分極抵抗による電位ロスを、対極であるステンレス板と鉄筋表面の間でのモルタル抵抗による電位ロスを考慮した。
2）カソード分極曲線の測定方法

上述の1）と同様に、Ag/AgClを参照電極とし、鉄筋要素の電位を1mV/秒で強制的に電位変化させ、その時について流れる電流を記録した。

3）分極抵抗の測定方法

図-7に示すとおり、交流インピーダンス法により、各鉄筋要素の分極抵抗を測定した。なお、測定されたポード線図およびコールコイルプロットの例を図-8に示す。

4）鉄筋要素間のモルタル抵抗の測定方法

図-9に示すとおり、交流インピーダンス法により、各鉄筋要素間のモルタル抵抗を測定した。

（5）モデルのアウトプットデータと比較するための腐食電流の実測値の求め方

文献3)を参考にして、ミクロセル腐食電流およびマクロセル腐食電流を測定した。

すなわち、ミクロセル腐食電流は単一の鉄筋要素のみを含む電流をミクロセル腐食電流として定義し、図-7に示す方法により測定した。先ず鉄筋要素間を接続するリード線を一度切断した。この時、異なる鉄筋要素間では電流の出入口がない。この状態で、各鉄筋要素毎に鉄筋表面の分極抵抗を、周波数応答解析装置FRA(Frequency Response Analyzer)を用いた交流インピーダンス法により求めた。測定は、10kHzから5MHzの範囲において、振幅50mVの電圧を与えて行った。さらに、文献4)を参考に、ミクロセル腐食電流密度I_{micro}は式(3)より求めた。

$$ I_{micro} = \frac{K}{R_{pi}} \quad (3) $$

ここで、I_{micro}は鉄筋要素iにおけるミクロセル腐食電流密度(A/cm²)、R_{pi}は鉄筋要素iにおける分極抵抗(Ω・cm²)、Kは定数(0.0209V)を示す。

また、マクロセル腐食電流は图-10に示す方法により測定した。すなわち、接続する鉄筋要素間で無抵抗電流計を接続し、電流(マクロセル腐食電流)を求めた。その対象とする鉄筋要素の両端を外す電流を合計した。この電流を鉄筋要素の表面積で除すことにより、鉄筋要素表面でのマクロセル腐食電流密度を算定した。すなわち、鉄筋要素iのマクロセル腐食電流密度I_{macro}は式(4)で表せる。

$$ I_{macro} = \frac{I_{i-1,i} + I_{i+1,i}}{S_i} \quad (4) $$

ここで、I_{macro}は鉄筋要素iのマクロセル腐食電流密度(A/cm²)、I_{i-1,i}は鉄筋要素i-1から鉄筋要素iへ流れる腐食電流(A)、I_{i+1,i}は鉄筋要素i+1から鉄筋要素iへ流れる腐食電流(A)、S_iは鉄筋要素iの表面積(cm²)を示す。

また、以上のように測定されたマクロセル腐食電流とミクロセル腐食電流の和を総腐食電流とした。
3.2 3.1(4)により測定された電気化学的特性値
(1) アノード分極曲線
モデルへのインプットデータとして測定されたアノード分極曲線を図-11 に示す。
図(a)によれば、ひび割れがある場合、またはひび割れ幅が広い場合、アノード腐食電流は流れやすいことが確認された。特に、ひび割れの有無がアノード分極曲線に及ぼす影響は大きく、一方ひび割れ幅がアノード分極曲線に及ぼす影響は小さいことが確認された。
図(b)によれば、湿度が高い場合、アノード腐食電流は流れやすいことが確認された。
図(c)によれば、セメント比が高い場合、アノード腐食電流は流れやすいことが確認された。
(2) カソード分極曲線
モデルへのインプットデータとして測定されたカソード分極曲線を図-12 に示す。
図(a)によれば、ひび割れがある場合、またはひび割れ幅が広い場合、カソード腐食電流は流れやすいことが確認された。特に、アノード分極曲線と同様に、ひび割れの有無がカソード分極曲線に及ぼす影響は大きく、一方ひび割れ幅がカソード分極曲線に及ぼす影響は小さいことが確認された。
図(b)によれば、湿度が高い場合、カソード腐食電流は流れやすいことが確認された。
図(c)によれば、水セメント比が高い場合、カソード腐食電流は流れやすいことが確認された。

(3) 分極抵抗
モデルへのインプットデータとして測定された鉄筋要素1と鉄筋要素3の分極抵抗を図-13に示す。これによれば、実験ケースに拘らず、健全なモデル内における鉄筋要素1と比較して、びび割れと接する鉄筋要素3において、分極抵抗が小さいことが確認された。
また、鉄筋要素3において、びび割れ幅が広い場合、抵抗は小さくなることが確認された。

(4) モルタル抵抗
モデルへのインプットデータとして測定された鉄筋要素1と鉄筋要素3の間の電抵抗を図-14に示す。
これによれば、びび割れ幅が狭い場合、抵抗は小さくなることが確認された。また、湿度が低い場合、抵抗は大きくなることが確認された。さらに、水セメント比が高い場合、抵抗は大きくなることが確認された。

3.3 解析結果
(1) 解析手順の例
びび割れ幅が0.4mmで、湿度が90%で、水セメント比が50%のNo.3ケースにおける、具体的な解析手順を紹介する。ここで、全インプットデータを表-3、表-4および図-15に示す。なお、表-4における一部のデータでは、鉄筋要素間の距離が長い場合に、短い場合と比較して、モルタル抵抗の値が小さくなっている。また、鉄筋間距離比が小さい場合に、抵抗は増加するはずである。したがって、本実験では、モルタル中のイオン濃度の実験のパラメータ、鉄筋表面とモルタル間の空隙部の電位差のパラメータなどの影響による可能性が考えられる。今後、この理由を実験的に検証する必要がある。

先ずは2.3に基づき、任意の鉄筋要素におけるアノード分極曲線とカソード分極曲線を重ねる。ここで、図-16に示すとおり、カソードを対極とする場合、同一の鉄筋要素におけるアノード・カソード分極曲線を用い、また分極抵抗の2倍をアノード・カソード間の電抵抗として電位ロスを考慮する。一方、図-17に示すとおり、モルタル腐食を対象とする場合、異なる鉄筋要素におけるアノード・カソード分極曲線を用い、両鉄筋要素の分極抵抗とモルタル抵抗の和をアノード・カソード間の電抵抗として電位ロスを考慮する。全鉄筋要素間において上述の解析をした結果、各鉄筋要素間を流れる腐食電流は、表-5に示すとおりとなる。
さらに、鉄筋要素iにおけるマクロセル腐食電流密度は式(5)のとおり算定される。一方、鉄筋要素iにおける

<table>
<thead>
<tr>
<th>鉄筋要素 No</th>
<th>分極抵抗(kΩ·cm²)</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>184.6</td>
</tr>
<tr>
<td>2</td>
<td>196.6</td>
</tr>
<tr>
<td>3</td>
<td>18.3</td>
</tr>
<tr>
<td>4</td>
<td>69.8</td>
</tr>
<tr>
<td>5</td>
<td>82.7</td>
</tr>
</tbody>
</table>

表-4 モルタル抵抗のインプットデータの例

<table>
<thead>
<tr>
<th>鉄筋要素 No</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>4</th>
<th>5</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>-</td>
<td>4.0</td>
<td>2.8</td>
<td>3.5</td>
<td>2.5</td>
</tr>
<tr>
<td></td>
<td>2</td>
<td>4.0</td>
<td>3.0</td>
<td>4.0</td>
<td>4.2</td>
</tr>
<tr>
<td></td>
<td>3</td>
<td>2.8</td>
<td>3.0</td>
<td>3.2</td>
<td>3.0</td>
</tr>
<tr>
<td></td>
<td>4</td>
<td>3.5</td>
<td>3.0</td>
<td>2.0</td>
<td>2.0</td>
</tr>
<tr>
<td></td>
<td>5</td>
<td>2.5</td>
<td>4.2</td>
<td>3.0</td>
<td>2.0</td>
</tr>
</tbody>
</table>

図-15 分極曲線のインプットデータの例

ミクロセル腐食電流密度は式(6)のとおり算定される。さらに、電流密度はマクロセル腐食電流密度の和として算定される。
マクロセル腐食電流密度 \(= \sum_{i=1}^{n} I_{i,j} \div S_{i} \) ⑴
ミクロセル腐食電流密度 \(= \sum_{j=1}^{m} I_{i,j} \div S_{i} \) ⑵

ここで、\(S_{i} \) は鉄筋要素 \(i \) の表面積 \(\text{cm}^{2} \) 以上の結果をまとめ、各鉄筋要素の腐食電流密度を表-6に示す。なお、100 \(\mu \text{A/cm}^{2} \) の腐食電流密度は、1.16mm/年腐食速度に換算できる⑴。
腐食電流密度分布の解析結果を、図-18に示す。これによれば、マクロセル腐食電流密度およびミクロセル腐食電流密度ともに、ひび割れ部で最大値を示していることが認められる。

（2）解析結果と実験結果の比較
図-19に、実験ケースにおける全ての鉄筋要素での、総腐食電流密度の解析値と実測値を比較する。これによれば、解析値と実測値のオーダーは等しいことが認められる。すなわち、①総腐食電流密度が低いとき、解析値と実測値はどれも0.5 \(\mu \text{A/cm}^{2} \) 程度程度であり、腐食が進行していないことを示している。一方、②総腐食電流密度が高いとき、解析値と実測値の差は3倍以内である。なお、本モデルが工学的に妥当であることを検証するために、各クラスタラテーチング（ひび割れの有無、湿度、水セメント比）が腐食密度に及ぼす影響を比較する。

\[\text{表-5 腐食電流の例} \]

<table>
<thead>
<tr>
<th>鉄筋要素 No</th>
<th>アノード</th>
<th>カソード</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.8</td>
<td>0.9</td>
</tr>
<tr>
<td>2</td>
<td>0.2</td>
<td>0.1</td>
</tr>
<tr>
<td>3</td>
<td>1.5</td>
<td>2.0</td>
</tr>
<tr>
<td>4</td>
<td>0.8</td>
<td>0.6</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

\[\text{表-6 アウトプットされた腐食電流密度の例} \]

<table>
<thead>
<tr>
<th>鉄筋要素 No</th>
<th>アノード</th>
<th>カソード</th>
<th>カソード</th>
</tr>
</thead>
<tbody>
<tr>
<td>1</td>
<td>0.1</td>
<td>-0.1</td>
<td>0.2</td>
</tr>
<tr>
<td>2</td>
<td>0.3</td>
<td>-0.3</td>
<td>0.4</td>
</tr>
<tr>
<td>3</td>
<td>1.6</td>
<td>2.6</td>
<td>3.6</td>
</tr>
<tr>
<td>4</td>
<td>0.3</td>
<td>0.3</td>
<td>0.3</td>
</tr>
<tr>
<td>5</td>
<td>0.0</td>
<td>0.0</td>
<td>0.0</td>
</tr>
</tbody>
</table>

図-16 ミクロセル腐食電流の解析例
（Iₐₐ挡住 finalize task.
4. 種々の条件が腐食速度に及ぼす影響

4.1 ひび割れの有無

図-20 に、ひび割れの有無が総腐食電流密度分布に及ぼす影響を示す。これによれば、ひび割れが存在すると、腐食電流密度が高くなることが確認できる。特に、ひび割れがある場合には腐食が進行することが確認できる。このことは、既往の実験結果13,14によっても確認されている。したがって、モデルでは、ひび割れの有無が腐食速度に及ぼす影響を解析的に再現できることが明らかとなった。

![ひび割れの有無が腐食速度に及ぼす影響](image)

図-20 ひび割れの有無が腐食速度に及ぼす影響

4.2 湿度

図-21 に、湿度が総腐食電流密度分布に及ぼす影響を示す。これによれば、湿度が90%の場合、60%の場合と比較して、腐食電流密度が高いことが確認できる。このことは、既往の実験結果15によっても確認されている。したがって、モデルでは、湿度が腐食速度に及ぼす影響を解析的に再現できることが明らかとなった。

![湿度が腐食速度に及ぼす影響](image)

図-21 湿度が腐食速度に及ぼす影響

4.3 水セメント比

図-22 に、水セメント比が総腐食電流密度分布に及ぼす影響を示す。これによれば、水セメント比が50%の場合、30%の場合と比較して、腐食電流密度が高いことが確認できる。このことは、既往の実験結果16によっても確認されている。したがって、モデルでは、水セメント比が腐食速度に及ぼす影響を解析的に再現できることが明らかとなった。

![ひび割れの有無・湿度・水セメント比が腐食速度に及ぼす影響](image)

図-22 W/Cが腐食速度に及ぼす影響

5. モデルの実構造物への適用方法

本研究では、分割鉄筋を埋設した供試体を用いた実験により、「分極曲線」・「分極抵抗」および「コンクリート抵抗」などのインプットデータを求めた。今後、材料条件や環境条件にこれらの値をデータベース化し、実験を行わせてインプットデータが得られるように整理したい。また、図-23に示すとおり、一般的な構造物（すなわち分割されていない鉄筋）に対しては、鉄筋を適切な長さ（1〜10cm）に要素分割し、モデルの適用を試みたい。なお、既往の文献17によれば、図-24に示すとおり、「腐食電流密度の時間積分値」と「腐食量」は合致することが確認されている。したがって、本研究では「腐食電流密度」をアウトプットデータとして求めたが、このモデルを用いて短時期内の腐食電流密度を計算すれば、「腐食量」の予測が可能となるはずである。
6. 結論

本研究で得られた主な結論を示す。

1) ひび割れを有する鉄筋コンクリート部材を対象とし、マクロセメント腐食速度およびミクロセメント腐食速度を解析するモデルを提案した。モデルのインプットデータは、アーノード分極曲線、カソード分極曲線、分極抵抗およびコンクリート抵抗である。

2) 人工ひび割れが導入されたモデル供試体を用いた実験により、モデルの妥当性を検証した。

3) モデルを用いることにより、ひび割れの有無、湿度および水セメント比が腐食速度に及ぼす影響を解析的に照査することができた。

4) モルタル中鉄筋の電気的特性値を測り、ひび割れの有無、ひび割れ幅、湿度および水セメント比が、アーノード分極曲線、カソード分極曲線、分極抵抗およびモルタル抵抗に及ぼす影響を明らかにした。

謝辞：本研究を実施するに当たり、社団法人日本コンクリート工学会「コンクリート構造物の長期性能照査支援モデル研究委員会（委員長：武若耕司[鹿児島大学助教授]）」において、貴重なコメントを受けた。ここに記して謝意を表す。

参考文献

1) 日本コンクリート工学会：コンクリート構造物の長期性能照査支援モデルに関するシンポジウム委員会報告書・論文集，2004
3) 関本，山本英夫：コンクリート中鉄筋における腐食速度の解析に関する一考察，コンクリート工学年次論文報告集，No.9，Vol.1，pp.381-386，1987
4) 土木学会：2001 年制定コンクリート標準示方書[維持管理編]，pp.99-104，2001
5) 日本コンクリート工学会：コンクリート構造物の補修工法研究委員会報告書（Ⅱ），pp.120-129，1994
6) 長崎重義，大関信明，守分教頭，鍍田敬郎，宮里心一：鋼材腐食速度における打設時の物質透過性の鉄筋のマクロセメント腐食に及ぼす影響，土木学会論文集，No.578，V-37，pp.31-42，1997
7) 大関信明，ひびわれがコンクリート中の鉄筋の腐食傾向に及ぼす影響の電気化学的検討，セメント技術年報，No.39，pp.288-291，1985
8) 宮里心一，大関信明，小長井彰：分割鉄筋を用いたマクロセメント腐食測定方法の実験的・理論的検討，コンクリート工学年次論文集，第23 巻，第2 号，pp.547-552，2001
9) 腐食防食協会：耐腐食理解するための電気化学入門，第23回技術セミナー資料，pp.13-25，2000
10) 宮里心一，大関信明，佐佐亜明：分割鉄筋を用いた断面腐食部のマクロセメント腐食速度予測，コンクリート工学年次論文報告集，Vol.20，No.2，pp.865-870，1998
11) 水塩窟，前田健，春山志郎：交流法腐食モニターの局部腐食への適用，防食技術，No.28，pp.638-644，1979
12) 腐食防食協会：腐食・防食ハンドブック，p.572，2000
13) 岡田清，小橋治，宮川修平：コンクリート部材のひびわれと鉄筋腐食に関する研究，土木学会論文報告集，第281号，pp.75-87，1979
14) 大野義昭，鈴木芳明，田村博：コンクリート中鉄筋のマクロセメント腐食に及ぼす各種要因の影響，セメント・コンクリート，No.601，pp.41-48，1997
15) 宮里心一，大関信明，既存鉄筋コンクリート部材中のマクロセメント腐食速度の推定，コンクリート工学論文集，第12巻，第2号，pp.93-103，2001
16) 長崎重義，大関信明，守分教頭，宮里心一：鉄筋コンクリート部材の断面腐食部における腐食形成に関する実験的研究，土木学会論文集，No.544，V-32，pp.109-119，1996
17) 大関信明，宮里心一，柴田孝男，久田整，Tarek Uddin Md.：長崎重義：鉄筋コンクリートの中のひび割れによる腐食形成機構に及ぼす水セメント比の影響，土木学会論文集，No.606，V-41，pp.63-73，1998
18) 宮里心一：モルタル中ひび割れが呈した腐食速度の電流密度と腐食速度の関係および腐食速度を用いた実験事例，第33 回セメント・コンクリート研究発表会論文報告集，pp.23-28，2004

（原稿受理日：2005 年 5 月 10 日）
Synopsis: In the reinforced concrete with the crack, the corrosion rate becomes high because the macrocell is formed. This study proposed the analytical model, whose input data were the anodic and cathodic polarization curves, the polarization resistance and the concrete resistance, while output data were the macrocell and microcell corrosion rates. Also, the experiments using the mortar specimen with the different cracks, the humidity and the water cement ratios were carried out to verify the model. As the result, 1) the corrosion rate analytical model of the reinforced concrete with the crack was proposed. 2) It was confirmed that the model was appropriate by the experiment using the mortar specimen.

Keywords: Chloride induced corrosion, Corrosion rate analytical model, Crack, Macrocell, Microcell, Polarization curve