高アスペクト比／大粒子径ナノコンポジット用マイカ

○太田 俊一・林 剛芳・植口 信三（トピー工業）

【緒言】
昨今の科学技術重点領域にナノテクノロジーという言葉がしばしばでてくる。これはnm（ナノメートル）オーダーで原子・分子を制御し、物質の新たな特性を引き出す微小領域技術の総称である。その中の一つの技術としてナノコンポジットがある。ナノコンポジットは樹脂中にフィラー粒子を微分散させることで高機能を得る技術である。このときのフィラーはナノオーダーで分散させる必要があるが、ナノオーダーの微粒子を粉砕で作ることは難しい。そこで膨潤性層状ケイ酸塩の膨潤能を利用してある。膨潤性層状ケイ酸塩は水と接触すると層状結晶の層間に水分子を取り込み膨潤・分散する性質がある。層状結晶の単位層まで分散が進むと厚さ約1nmの薄片粒子となる。膨潤性層状ケイ酸塩の膨潤能は水系だけではなく、有機溶媒や樹脂中で膨潤させることもできる。この技術を用いてナノオーダーの層状ケイ酸塩フィラーと樹脂を複合させてナノコンポジット化させることができる。

【課題】
ナノオーダーのフィラーといっても実際にはナノメーターサイズの粒子が複合化しているわけではない。ナノメーターサイズの粒子が入ったとしても物理的特性の向上にはつながらない。樹脂を構成する高分子同士を結びつける骨材として働く程度のサイズは必要である。ナノオーダーの薄さとフィラーとしての広さが求められる。つまり、アスペクト比の大きなものがナノコンポジット材料に適しているといえる。従来は、分散性が良く10μm以上のサイズの膨潤性層状ケイ酸塩は安価に大量に入手することが難しく、検討されてはいなかった。

【方法】
しかし、融合成法による層状ケイ酸塩の合成ではメルトから結晶化における冷却速度を変化させることで結晶サイズの制御が可能であると考えられる。また、得られた融体を製品化するときに通常は強い応力もしくはシェアをかけることで粉砕し、製品化するが、

図1. 大粒子径マイカのSEM写真

おおた しゅんいち・はやし たかよし・ひぐち しんぞう

—240—
大粒子径のマイカは解砕だけではなく、粒子そのものまで砕かれてしまう恐れがある。そこで著者等はNa型四珪素雲母鉱塊に水蒸気を作用させることで雲母結晶をべたつかせずに膨潤させることにより、鉱塊を崩壊、紛化させ試料を得た。

【結果】
結晶化速度を制御することで大粒子径Na型四珪素雲母を合成した。同鉱塊を物理的な粉砕の過程を取らずに水蒸気の作用で紛化させることで粒子径約20μmの大粒子径Na型四珪素雲母を得ることに成功した（図1）。また、水蒸気の作用で紛化させることでは結晶化の過程で発生する膨潤能を持たない周辺急冷相は紛化せず、容易に除去することができた。その結果、雲母の純度向上に有用であることが判明した。今回得られた雲母は天然や固相反応法では得ることがほぼ不可能な大粒子径（図2）とそれらと同等の高い水膨潤性を示している。一般に膨潤力は粒子が細かいほうが高く出やすい傾向があるがこれだけの大粒子でありながら膨潤力30は画期的である。水中でも高い懸濁安定性を有している。また、四級アンミウム塩とイオン交換することで有機溶媒中に分散させることもでき、ナノコンポジットに求められる高アスペクト比/大粒子径を得ることができた。

表1 各種層状ケイ酸塩の特性比較

<table>
<thead>
<tr>
<th></th>
<th>粒子径(μm)</th>
<th>CEC (meq/100g)</th>
<th>膨潤力 (g/100cc)</th>
<th>pH</th>
<th>導電率 (mS/cm)</th>
</tr>
</thead>
<tbody>
<tr>
<td>平均</td>
<td>19.97</td>
<td>2.44</td>
<td>80</td>
<td>10.0</td>
<td>830</td>
</tr>
<tr>
<td>熔融合成マイカ</td>
<td></td>
<td></td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>固相反応合成マイカ</td>
<td>6.13</td>
<td>1.68</td>
<td>110</td>
<td>36</td>
<td>120</td>
</tr>
<tr>
<td>天然モンモリロナイト</td>
<td>1.76</td>
<td>1.47</td>
<td>115</td>
<td>64</td>
<td>650</td>
</tr>
</tbody>
</table>

図2：各種層状ケイ酸塩の粒度分布の比較