粘土膜を表面塗工した透明難燃ガラス繊維強化プラスチック

【著者】透明性、不燃性及び、耐衝撃性は、ガラスとプラスチックの例から分かるように、一般的にはトレードオフの関係にあり、これら3つの性質を同時に満足させることは容易ではない。具体的には、プラスチックを不燃化・難燃化が難燃剤添加、無機フィラー添加、ポリマー粘土ナノコンポジット化等種々の方法で試みられているが、いまだ十分な不燃化は困難である。鉄道車両においては、特にトンネルや地下駅などの閉鎖空間での火災に対する安全性を向上させる目的で、内装材料等の不燃化が急務である。特に照明カバー等に用いられる透明材においてその不燃性を向上させることが困難であり、透明な不燃材料の開発が期待されている。

産総研は粘土を主成分とする建築材料開発を行い、これが不燃性に優れていることを確認している。さらに、粘土の原料として、有色彩石を持つ合成粘土を用いると、膜の高い透明性が実現することが分かっている。本研究では、合成粘土を主成分とするコーティング膜をガラス繊維強化プラスチック（以下「GFRP」）の表面に塗工した多層複合の試作を行い、その透明性および難燃性を評価した。

【実験】多層複合は、図1に示すような断面構造からなる。ここで粘土膜は、材料の表面を不燃化し、燃焼に必要な酸素の供給を遮断するとともに、エポキシ樹脂の熱分解ガスを噴出すさせない遮蔽層としての役割を有する。

多層複合の作製は下記の通り行った。用いたガラス繊維複合材は東洋繊維のWFA230の平繊のもので、これを2〜3層重ね、真空含浸法（VARTM法）により、あらかじめ無機粒子と混合させた樹脂を含浸させた。樹脂はナガセケムテックス製透明エポキシ樹脂XNR6830を用いた。無機粒子としては、龍森製結晶性シリカCMC-12S（光屈折率1.55）、溶融シリカD15000（光屈折率1.45）を用いた。無機粒子は、エポキシ樹脂、硬化剤と無機粒子の重量比に対して30〜40％添加した。樹脂、硬化剤、無機粒子を混合する際の自転公軸ミキサーによる混練・脱気後、VARTM法を行った。VARTM含浸後、溶剤を乾燥させ、130℃で5時間エポキシ樹脂のキュアを行った。粘土膜の形態は次のように行った。粘土、エポキシ樹脂、製造工程による型を用い、バイナダーとしてナガセケムテックス社製水溶性ナイロン（トレジンFS350）を用いた。粘土膜乾燥重量中のナイロンの重量割合は、0〜25%とした。粘土とバイナダーが5重量%程度の水系コーティング液を、バコーティングにより200から500μm程度のウェット厚みでGFRP上に塗工し、これを乾燥させることで、10から20μm厚の粘土コーティング膜を得た。得られた板材の厚みは0.5〜3.0mmである。

不燃材料を評価する試験としては、アルコール燃焼試験、ならびにコーニングリーメーターサファイア熱天性試験を行った。アルコール燃焼試験は、B5サイズの供試体を斜め45度にセットし、0.5cm²のエタノール着火し約2分後接血させて、試験片の着火状態および劣化を確認するものである（図2）。また、コーニングリーメーターファイア発熱性試験は、10cm角の供試体を用い、東洋精機製Cone CalorimeterC3を用いてISO5660準拠の条件で実施した。

全光透過率は、日本電気工業社製NDI5000を用いて測定した。

〇いとう ゆうき・おやま あきひこ・えびな たけお・はやし ひろみち・なかむら たかし・いわた しんいち・くろさか せいいち・しのき すすむ
【結果】
1. アルコール燃焼試験…粘土膜にバインダーを添加しない場合、粘土膜が割れやすく、バインダーを添加することによって粘土膜が容易に割れず、着火時間を遅延できることとなった。いずれの場合も炎は試験片の上端を越えず、変形範囲は長さ85mm、幅40mm程度に抑えることができた（図2）。残炎、残じんはなかった。ただしアルコール燃焼中に、軽微ではあるが、着火・着炎の発生があり、鉄道車両用材料の燃焼性試験の判定基準で「難燃性」の判定結果となった。
2. コーンカロリーメーター発熱性試験…供試体が厚いほど着火時間は遅くなることが分かった（図3）。供試体厚み2.5mm以上で着火時間が60秒以上となった。エポキシ樹脂中のフィラー量は30と40重量パーセント間で有意な差はなかった。一方で厚くすることにより、総発熱量が高くなるので、着火時間は十分遅く、かつ総発熱量が規定値である30MJ/m2を超えない最適な厚み範囲、2.5mm以上3.0mm以下、があることを見出した。このとき、供試体には、樹脂に対して内数で35重量％の無機粒子を添加している。本供試体の最大発熱速度はいずれも300kW/m2未満であり、この項目については鉄道車両用材燃焼試験における不燃材の基準値を満たしている。コーンカロリーメーター試験後の供試体において、樹脂成分は失われているものの、粘土膜は残存しているため、粘土膜は燃焼の遅延に寄与していると考えられる。
3. 全光線透過率…透明性については、溶融シリカを用いた供試体（厚み3mm）の全光線透過率が40％であるのに対して、結晶シリカを用いた場合は70％であった。溶融シリカは透明エポキシ樹脂との屈折率が近いため、乱反射が低減され、そのため供試体の全光線透過率が高くなったと考えられる。
【結論】コーンカロリーメーター発熱性試験において、供試体厚みが着火時間と相関するのは、供試体が厚いほど、供試体を加熱するために時間がかかるためと考えられる。多積層体の全光線透過率は、一般的な透明拡散板や他の難燃透明材より高い値を示した。以上のよう、本多積層体は、難燃性、透明性に優れていることが確認されたことから、今後さらに難燃性を向上させることにより、多くの用途が期待できる。
謝辞：本研究の一部は、平成23年度戦略的基盤技術高度化支援事業「不燃透明複合材とそれを用いた照明カバーの製造技術の開発」によるものである。

図2 アルコール燃焼性試験の様子（左）と試験後の多積層体の表面状態（右）
図3 多積層体の供試体厚みとコーンカロリーメーター発熱性試験における着火時間の関係