1. 目的

ジオポリマー(GP)硬化体はケイ素やアルミニウム成分を含む非晶質物とケイ酸アルカリ溶液の反応によって生じる。硫黄灰から作製したジオポリマー硬化体は非晶質であるが、その局所構造はゼオライトに類似し、陽イオン交換能を有する。そこで、筆者らは交換性陽イオンをHとのジオポリマー粉末を作製し、アルカリシリカ反応抑制剤への適用を検討している。一方、GP硬化体の構造特性への適用を考えたとき、強度増進を目的として、硫黄灰にCaを含有する高炉スラグ微粉末を添加することが多く、その構造も異なる。また、ケイ酸アルカリ水溶液の濃度やSiとNaあるいはKなどのアルカリ成分比の違い、硬化体の作製法など、GP硬化体の配合・作製法は複雑であり、それと諸特性との関係は明確でない。そこで、筆者らは、種々の配合・作製法のGP硬化体を作製し、それら硬化体の配合と諸特性の関係を検討した。

2. 試料作製及び試験

2.1 GP硬化体の作製

GP硬化体の作製の概要を図1に示す。一つはケイ酸アルカリ溶液中的Si成分として水ガラスを用いる一般的な方法、一つは筆者らが提案した水ガラスの代わりにシリカファーム(SF)等のSiO2微粉末を用い、練混ぜ時に添加して溶解させるSF添加法である。一般的な方法では、アルカリ源としてNaを単独で使用した場合、短時間で凝固が起こり、可成時間のコントロールが難しい。しかし、SF添加法では、凝固が起こりにくく、硬化体作製が容易である。ただし、練混ぜ温度が低いと、アルカリ成分量が少ない場合は、高炉スラグ置換率が少ない場合、一般法と比較して強度が低下する傾向となる。

ジオポリマークーリトグロスは一般法で作製したもの、可成時間得るためにアルカリ成分の一部をKOHとし、種々のAW(アルカリ成分水モル比)および高炉スラグ置換率、養生条件80℃、12h相当で作製した(表1)。ジオポリマーモルタルはSF添加法で作製した。SF添加法では、K成分を用いない場合に必要な可成時間が得られるため、アルカリ成分全てをNaとし、養生条件は上記GPコンクリートと同様とし、Si/A(ケイ酸アルカリ成分モル比)および高炉スラグ置換率を変えたものを作製した(表2)。

2.2 試験方法

加温養生24日のコンクリート、モルタルに関して圧縮、割裂引張、曲げ強度を測定した。また、乾燥収縮率は加温養生後
脱型した試料を7日間水中浸漬後、20℃、相対湿度60%の環境で静置して測定した。また各試料を塩水に浸漬し3ヶ月後浸漬開放面から浸透した塩化物イオン量を測定した。各試料の細孔径分布は水銀ポロメーターで測定した。

3. 結果と考察

図2はGPコンクリートの圧縮強度、割裂引張強度、図3はGPモルタルの圧縮強度と曲げ強度を図示したものである。図2から同一高炉スラグ置換率ならA/Wに応じて、同一A/Wなら高炉スラグ置換率に応じて圧縮および引張強度が大きくなる。一方、図3からSi/Aが大きくなると、高炉スラグ置換率に関らず、やや圧縮強度が低下する傾向が認められること、一方、曲げ強度に関しては高炉スラグ置換率により最も大きくなるSI/A配合が異なかった。

図4はGPコンクリートの乾燥収縮測定結果である。同一高炉スラグ置換率では、A/Wの大きさのほど乾燥収縮が小さかったが、高炉スラグ置換率に対する乾燥収縮量の相違は明確ではなかった。なお、乾燥収縮測定時の温度減少は試番2より大きく、4の3の1倍であった。

図5はGPコンクリートの塩水浸漬試験結果(3ヶ月経過時)である。同一A/WならばBS置換率が大きいほど、同一BS置換率の場合、A/Wが大きいほど塩化物イオンの浸透速度が小さかった。

図6はGPモルタル及びコンクリートの細孔径分布を測定した結果である。

高炉スラグの添加により、40nmおよび130nm近辺の細孔半径を示す細孔が減り、より微細な細孔が増加した。これは高炉スラグの添加によりC-S-H、すなわちAl一酸化シアン化物形状が生じ顕著化したためと推察される。したがって、乾燥収縮において高炉スラグを使用しない試番2は大きな細孔が多く、水分逸脱量が多かったものの、検出結果は小さくなることが明らかになった。これら大細孔の減少は塩化物イオン浸透量を抑制することに効果的であるが、高炉スラグ20%置換GPコンクリートでもA/W=0.10では、塩化物イオンの浸透が進んだ。したがって、これら耐久性を確保するためには、反応に必要となるアルカリ量を確保するため、ある程度大きいA/Wとすることが必要と推察される。一方、Si/A比に関しては、細孔分布に与える影響は小さかった。ただし、SF添加法の場合、SFが溶解する量が明確ではないことから、必ずしも所定のSi/A比になっているとは限らない。また、一般法においてSi/A比で劣化性状が異なることもあっていることから、Si/A比に対する考察は「一般法」と「SF添加法」で分けて考え、今後検討する必要がある。

参考文献
(2) Motoki Uehara et al. “Inhibition of alkali-silica reaction by H-type geopolymer from fly ash”, The 9th Asian Clay Conference, 2012
(3) 上原他 フライアッシュを原料としたH型ジオポリマーの作製とイオン交換特性、粘土科学、日曜中
(4) 南部「ジオポリマー硬化体の諸特性に関する基礎的観察」コンクリート工学年次論文集第35巻1号、pp1957-1962、2013年