Meiotic Behaviour in Wild Diploid Arachis (Leguminosae) Species

Verónica Rodríguez¹, J. Guillermo Seijo¹, Graciela I. Lavia¹,²,*
Aveliano Fernández¹,³ and Charles E. Simpson⁴

¹ Instituto de Botánica del Nordeste (UNNE-CONICET), C.C. 209, 3400 Corrientes, Argentina
² Facultad de Ciencias Agrarias, Universidad Nacional del Nordeste, Sgto. Cabral 2131, 3400 Corrientes, Argentina
³ Facultad de Ciencias Exactas y Naturales y Agrimensura, Universidad Nacional del Nordeste, Campus Libertad, 3400 Corrientes, Argentina
⁴ Texas Agricultural Experiment Station, Texas A and M University, Stephenville, Texas 76401, USA

Received March 3, 2004; accepted March 18, 2004

Summary Meiotic studies of A. chiquitana, A. matiensis, A. subcoriacea (Sect. Procumbentes), A. triseminata (Sect. Triseminatae), A. benensis, A. diogoi, A. herzogii and A. kempff-mercadoi (Sect. Arachis) are reported for the first time. Meiotic behaviour was essentially regular in most of the species, with 10 II at diakinesis-metaphase I, except in A. benensis which presented 8 II in 2% of the pollen mother cells. Most of the bivalents were of the ring type, and only one or two bivalents were usually of the rod type. Chiasmata were always located in distal to terminal position even at diplotene and diakinesis. Normal segregation of bivalents is in accordance with the recorded high meiotic indexes and pollen stainability. Only one pair of chromosomes was easily recognized, that being the very small “A” pair in the species with A genome of Arachis section. This small pair can be used at meiosis to distinguish between the A and B genomes species and may be a useful marker to detect allopolyploids involving both genomes.

Key words Arachis, Meiotic behaviour, Wild diploid.

Arachis is an indigenous genus of South America, and consists of about 80 species. Krapovickas and Gregory (1994) have recognized 9 sections based on morphological characters, cross compatibility and fertility of the hybrids. The tetraploid cultigen A. hypogaea (2n=40) is the most important species of the genus and belongs to section Arachis. In this section, there are another tetraploid species, A. monticola, and more than 27 diploid species. Many of these diploid species were found to be resistant to the primary diseases and pests of A. hypogaea and are being tested in crosses for introduction of resistance genes. Species of other sections have also been tested in crossing programs, however, the hybrids are rarely produced and they usually present a high degree of sterility.

Regarding gene introduction, the best results were obtained by chromosome doubling of wild species and hybrids before crossing with A. hypogaea (Simpson 1991, 2001). By this method reproductive barriers between wild diploid species and the cultivated peanut, due to different ploidy level, can be overcome. As in many instances, the main goal of breeding programs involves the transference of desirable agronomic characters that are present in different wild species to the cultigen. Thus, breeders have been advocated to artificial hybridization of these sources of germplasm.

At this respect, very few (less than 24%) species of Arachis have been studied meiotically, and this kind of information is still lacking for several sections. In this sense, as a part of a large investigation on the genome affinities between Arachis species the aim of this report was to describe comparatively the meiotic behaviour of 8 wild diploid species of Arachis that are cultivated at the Texas Agricultural Experiment Station, USA (TAES) and Instituto de Botánica del Nordeste, Argentina

* Corresponding author, e-mail: lavia@agr.unne.edu.ar
(IBONE) with the hope to provide valuable information for the genetic improving programs.

Materials and methods

The analyzed materials were collected from plants growing under greenhouse conditions at TAES and from plants growing in the experimental field at the Instituto de Botánica del Nordeste (CTES). Vouchers of original collections are kept at CTES herbarium. The localities of collection and collectors are shown in Table 1.

Meiotic study was performed on inflorescences fixed in ethanol : lactic acid 5 : 1 for 24 h (Fernández 1973), transferred to 70% ethanol and kept refrigerated until use. Pollen mother cells (PMCs) were stained in a drop of 3% acetic orcein. Representative permanent slides were made using Euparal as mounting medium. Photomicrographs were taken on a Zeiss microscope using Kodalith film.

Meiotic index was calculated by the ratio normal sporads/total of sporads analyzed. Pollen viability was estimated by the aceticarmine-glycerin technique. For each species 500 pollen grains were scored, considering viable grains those with uniformly dark stained cytoplasm.

Results and discussion

Meiotic behavior of A. benensis, A. chiquitana, A. diogoi, A. herzogii, A. kempff-mercadoi, A. matiensis, A. subcoriacea and A. triseminatae (Figs. 1, 2) is reported for the first time, all examined species were diploid $2n=20$. Chromosome numbers of the analyzed species are in accordance with previous reports based on somatic chromosome counts (Fernández and Krapovickas 1994, Lavia 1996, 2000). In section Arachis 2 basic chromosome numbers have been reported, $x=10$ and $x=9$ (Lavia 1996, 1998), however, all the species studied here belong to the group of $x=10$, which is by far the most widespread number among the species of the genus.

All the studied species presented, in general terms, a regular meiotic behavior with 10 II at diakinesis-metaphase I, except A. benensis which presented 8 II+1 IV in 2% of the pollen mother cells (Table 2). At metaphase I, most of the bivalents were of the ring type and only one or two bivalents per PMC were usually of the rod type (Table 2). Chiasmata were always located in distal to terminal position even at diplotene and diakinesis. The tetravalent observed in A. benensis probably arose as a consequence of a reciprocal chromosome interchange in heterozygosity. This phenomenon was also observed in other wild Arachis species (Singh and Moss 1982, Lavia et al. 2001), and
suggests that reciprocal translocations may be one of the mechanisms involved in structural changes of chromosomes and karyotype differentiation among diploids.

Segregation of bivalents was normal, except in *A. herzogii*, which presented 1 bridge in 11% of the studied cells in telophase I, and in *A. subcoriacea* which showed 1 bridge in 1% and 2 bridges in 4% of the analyzed PMCs (Table 3). Additionally, in *A. matiensis* 1 out of plate bivalent
was observed in metaphase I (14.7%) that segregated separately of the remaining bivalents. Since
this bivalent segregates asynchronously, homologous chromosomes would not reach the pole and
therefore, they may originate micronuclei in telophase II. These micronuclei ultimately could lead
to the formation of micromicrospores as those observed in the tetrad stage (Fig. 2A). This phenom-
enon is very similar to those observed in other legume groups, such as *Lathyrus* (Seijo 2002), in

<table>
<thead>
<tr>
<th>Species</th>
<th>Meiotic associations</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>n</td>
</tr>
<tr>
<td>A. benensis</td>
<td>60</td>
</tr>
<tr>
<td>A. chiquitana</td>
<td>10</td>
</tr>
<tr>
<td>A. diogoi</td>
<td>10</td>
</tr>
<tr>
<td>A. herzogii</td>
<td>10</td>
</tr>
<tr>
<td>A. kempff-mercadoi</td>
<td>15</td>
</tr>
<tr>
<td>A. matiensis</td>
<td>10</td>
</tr>
<tr>
<td>A. subcoriacea</td>
<td>9</td>
</tr>
<tr>
<td>A. triseminata</td>
<td>10</td>
</tr>
</tbody>
</table>

n=number of PMCs. R=ring, A=rod.

<table>
<thead>
<tr>
<th>Species</th>
<th>Metaphase I</th>
<th>Telophase I</th>
<th>Metaphase II</th>
<th>Telophase II</th>
</tr>
</thead>
<tbody>
<tr>
<td></td>
<td>Normal</td>
<td>1 II out of the plate</td>
<td>Normal</td>
<td>1 bridge</td>
</tr>
<tr>
<td>A. benensis</td>
<td>0</td>
<td>0</td>
<td>11</td>
<td>0</td>
</tr>
<tr>
<td>A. diogoi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A. herzogii</td>
<td>0</td>
<td>0</td>
<td>50</td>
<td>5</td>
</tr>
<tr>
<td>A. kempff-mercadoi</td>
<td>0</td>
<td>0</td>
<td>0</td>
<td>0</td>
</tr>
<tr>
<td>A. matiensis</td>
<td>34</td>
<td>5</td>
<td>80</td>
<td>0</td>
</tr>
<tr>
<td>A. subcoriacea</td>
<td>0</td>
<td>0</td>
<td>100</td>
<td>1</td>
</tr>
</tbody>
</table>

was observed in metaphase I (14.7%) that segregated separately of the remaining bivalents. Since
this bivalent segregates asynchronously, homologous chromosomes would not reach the pole and
therefore, they may originate micronuclei in telophase II. These micronuclei ultimately could lead
to the formation of micromicrospores as those observed in the tetrad stage (Fig. 2A). This phenom-
enon is very similar to those observed in other legume groups, such as *Lathyrus* (Seijo 2002), in

Fig. 2. Abnormal sporads in *A. matiensis*. A) sporad having two big microspores and two smaller
ones; B) sporad having more than the four normal microspores. Bar=50 μm.
which the high production of micromicrospores was attributed, at least in part, to asynchronous segregation.

The meiotic index, estimated through sporads analysis, was 100% in *A. diogoi*, *A. herzogii*, *A. Kempff-Mercadoi* and *A. triseminata*. In *A. matiensis* this index was lower due to the presence of micromicrospores and microspores larger than the normal ones (Fig. 2). All species presented high pollen viability, which range between 93.5 and 100%. Uncolored pollen grains, macrograins and micrograins (Table 4) caused the reduction of viability, even though each of these categories contributed differentially in the species analyzed. In general, the pollen viability was in accordance with that expected from the observed meiotic behavior. Pollen grains with different volumes, but with similar morphology, were observed in *A. subcoriacea*, *A. triseminata* and *A. herzogii*. The causes of pollen size variation remain unknown since no abnormality in meiosis was observed in these species.

At diplotene and diakinesis one small bivalent was clearly distinguished in *A. herzogii*, *A. kempff-mercadoi*, *A. diogoi* and *A. chiquitana*. This bivalent was usually of the ring type, with a conspicuous heterochromatic pericentromeric region, but with diffuse and poorly stained distal regions. This behavior is in correspondence with that described for the “A” chromosome pair in somatic cells (Fernández and Krapovickas 1994, Lavia 1996, 2000). The “A” chromosome pair was so far only detected in nearly half of the species that belong to section *Arachis*. The presence of these particular pair in *A. chiquitana*, currently included in section *Procumbentes*, needs particular considerations. This finding, together with the fact that none of the species belonging to section *Procumbentes* (*A. kreschtmeri*, *A. lignosa*, *A. matiensis*, *A. rigonii*, *A. subcoriacea*, *A. vallsii*) have the “A” chromosome pair (Fernández and Krapovickas 1994, Lavia 2000), may support the relocalization of this taxon into section *Arachis* as was suggested by Lavia (2000).

The results we obtained adds to the few data so far known on the meiotic behavior of *Arachis* species and provides some particular chromosome characteristics for the identification of different sections of *Arachis*, as well as some probable mechanisms of chromosome evolution of these groups of species.

Acknowledgements

The authors wish to acknowledge the financial support to SECYT de la Universidad Nacional del Nordeste, Argentina, Consejo Nacional de Investigaciones Científicas y Técnicas, Argentina and Instituto Interamericano de Cooperacion para la Agricultura, Argentina.
References

— 1998. Karyotypes of Arachis palustris and A. praecox (section Arachis), two species with basic chromosome number
293–298.
Seijo, J. G. 2002. Estudios citogenéticos en especies Sudamericanas del género Lathyrus, Sección Notolathyrus (Legumi
Genet. 61: 305–314.