Chromosomal Analyses of *Cobitis phrygica* Battalgazi, 1944 and *C. simplicispina* Hanko, 1925 (Teleostei, Cobitidae)

Muradiye Karasu Ayata1*, Sevgi Unal2 and Muhammet Gaffaroğlu3

1 Department of Biology, Faculty of Science and Art, Ahi Evran University, Kirsehir, Turkey
2 Department of Molecular Biology and Genetics, Faculty of Science, Bartin University, Bartin, Turkey
3 Department of Molecular Biology and Genetics, Faculty of Science and Art, Ahi Evran University, Kirsehir, Turkey

Received November 17, 2017; accepted April 18, 2018

Summary The purpose of this study is to reveal diploid chromosome number, karyotype and chromosomal banding properties with C-banding and Ag-staining in *Cobitis phrygica* Battalgazi, 1944 and *C. simplicispina* Hanko, 1925 from Turkey. Metaphase chromosomes were obtained from kidney cells. Both species had a same diploid chromosome number of 2n=50. Karyotypes were composed of four pairs of metacentric, four pairs of submetacentric and 17 pairs of subtelo-acrocentric chromosomes in *C. phrygica*, and eight pairs of metacentric, eight pairs of submetacentric and nine pairs of subtelo-acrocentric chromosomes in *C. simplicispina*. Fundamental arm numbers were calculated as 66 in *C. phrygica* and as 82 in *C. simplicispina*. C-bands were observed on the pericentromeric regions of most chromosomes in both species. Nucleolus organizer regions (NORs) were determined on one pair of chromosomes in both species.

Key words *Cobitis phrygica*, *Cobitis simplicispina*, Karyotype, C-band, Nucleolus organizer region, Turkey.

At least 18 species of the genus *Cobitis* belonging to Cobitidae are known in Turkey. It was reported that an endemic *C. phrygica* distributes in Acıgöl, Salda and Söğüt lakes watersheds of Turkey (Fricke et al. 2007, Kuru et al. 2014, Çiçek et al. 2015) and an endemic *C. simplicispina* distributes in the Sakarya and Kızılırmak basins and around the Tuz lake (Erk’akan et al. 2003). Also, some localities of *C. simplicispina* were recorded from Denizli and Muğla provinces (Yılmaz et al. 2006, Güçlü et al. 2013). Recently, the *Cobitis* that distributes in Turkey have been revised because of having complex and interesting problems about their systematics and phylogeny (Erk’akan et al. 1999). Erk’akan et al. (1999) pointed out that *C. phrygica* Battalgazi, 1944 should be a synonym of *C. simplicispina*. However, it was mentioned as *C. phrygica* Battalgil, 1944 by Kuru (2004) and as *C. phrygica* Battalgazi, 1944 by Fricke et al. (2007) and Kuru et al. (2014). The problems in taxonomy are still continuing.

Chromosomal investigation is one of the research topics in fish for solving the systematic and taxonomic problems. However, difficulties in obtaining chromosomes from fishes and their chromosomes are to be small in length, being outnumbered and the lack of a standard method reduces success in this area (Ulupınar and Alaş 2002). Chromosomal study has been reported in only one species, *C. elazigensis* from Anatolia (Déger 2011). The aim of the present work is to describe chromosomal properties with conventional, Ag-staining and C-banding in endemic loaches of *C. phrygica* and *C. simplicispina* from Anatolia.

Materials and methods

Five female and one male specimens of *C. phrygica* were collected from Salda Lake, Burdur, Turkey (37°31′N, 29°43′E) and four female and two male specimens of *C. simplicispina* were collected from Küfi Creek, Denizli, Turkey (38°21′N, 29°50′E). The specimens were carried alive to the laboratory. Metaphase chromosome preparations were obtained by the air drying technique (Collares-Pereira 1992).

C-banding technique of Sumner (1972) and Ag-staining technique of Howell and Black (1980) were applied. Preparations were screened in a Leica DM 3000 microscope and photographs were taken with a CCD camera and an AKAS software. Chromosome shapes were classified according to Levan et al. (1964). For calculating of the fundamental arm number (FN) meta-submetacentric (m-sm) chromosomes were taken as biarmed whereas subtelo-acrocentric (st-a) chromosomes were taken as uniarmed.

Results

The diploid chromosome numbers of *C. phrygica* and *C. simplicispina* were 2n=50 (Figs. 1A, 2A). Chromo-
somes were arranged as: four pairs of m, four pairs of sm and 17 pairs of st-a chromosomes in C. phrygica (Fig. 1B), and eight pairs of m, eight pairs of sm and nine pairs of st-a chromosomes in C. simplicispina (Fig. 2B). FN’s were calculated as 66 in C. phrygica and as 82 in C. simplicispina. Sex chromosome was not detected in both species. C-bands were determined on the pericentromeric regions of most chromosome pairs in both species (Figs. 1C, 2C). Almost chromosomes have C-bands in both species, although the long arms of Nos. 5, 13, and 33–38 chromosomes show the interstitial C-bands in C. phrygica and 17 and 18 chromosomes show the interstitial C-bands in C. simplicispina (Figs. 1D, 2D). Furthermore, Ag-NORs were observed on the terminal regions of the short arms of sm chromosomes (chromosome No. 7) in C. phrygica (Fig. 1E, F) and on the terminal regions of the long arms of the chromosomes of the largest sm pair in C. simplicispina by Ag-staining (Fig. 2E). Additional Ag-NORs were observed on the terminal regions of the short arms of one pair of sm chromosomes in C. simplicispina on some Ag-stained metaphases of male and female specimens (Fig. 2F).

Discussion

Karyotypes of Cobitis are highly diversified in terms of chromosome shape but they share almost the same chromosome number 2n=50 (Rab et al. 2007). C. phry-
Chromosomal Analyses of Cobitis phrygica and C. simplicispina from Turkey

C. phrygica and C. simplicispina showed similar morphology with other loaches. Also, their chromosome numbers are the same with the Anatolian endemic species C. elazigensis (Değer 2011) but their karyotypes are different (Table 1). Numbers of biarmed and uniarmed chromosomes of C. phrygica are similar with C. elazigensis. Otherwise, number of biarmed chromosomes of C. simplicispina is more than C. elazigensis whereas uniarmed chromosomes of C. simplicispina is less than C. elazigensis. Consequently, FN of C. phrygica is lower than C. elazigensis while FN of C. simplicispina is higher than C. elazigensis. C. phrygica and C. simplicispina have the same chromosome number with C. calderoni, C. elongatoides, C. linea, C. maroccana, C. taurica and C. vardarensis (Madeira et al. 1992, Rab et al. 2000, Rabova et al. 2001, Janko et al. 2005, Esmaeili et al. 2015). Nevertheless, st-a chromosomes of C. elongatoides, C. linea, C. taurica and C. vardarensis are lower than C. phrygica and C. simplicispina. Uniarmed chromosome numbers of C. calderoni and C. maroccana (Madeira et al. 1992) almost are the same with C. phrygica. Also,

Table 1. Chromosomal data of Anatolian Cobitis species.

<table>
<thead>
<tr>
<th>Species</th>
<th>2n</th>
<th>Karyotype</th>
<th>FN</th>
<th>References</th>
</tr>
</thead>
<tbody>
<tr>
<td>C. elazigensis</td>
<td>50</td>
<td>18m-sm+32a</td>
<td>68</td>
<td>Değer (2011)</td>
</tr>
<tr>
<td>C. phrygica</td>
<td>50</td>
<td>8m+8sm+34st-a</td>
<td>66</td>
<td>This study</td>
</tr>
<tr>
<td>C. simplicispina</td>
<td>50</td>
<td>16m+16sm+18st-a</td>
<td>82</td>
<td>This study</td>
</tr>
</tbody>
</table>

Fig. 2. Giemsa stained metaphase spread (A), arranged karyotype (B), C-banded metaphase spread (C), arranged karyotype (D), Ag-stained (E, F) metaphase spreads of C. simplicispina. The arrows indicate the Ag-NORs.
Sabanejewia aurata that is in the same family with C. phrygica and C. simplicispina was 2n=50. However, there are some differences in the chromosome morphology (Boron 2000). As reported in other Cobitis species (Rabova et al. 2001, Değer 2011, Esmaeili et al. 2015) sex chromosome was not determined in C. phrygica and C. simplicispina.

C-bands contain transcriptionally inactive highly repetitive DNA sequences (Sumner 1972, Boron 2000). C. phrygica and C. simplicispina are resemble to C. elazigensis in terms of the localization of C-bands on the centromeric regions of almost all chromosomes (Değer 2011) and to C. vardarensis which has pericentromeric C-bands on all chromosomes (Rabova et al. 2001) and to C. taenia which has pericentromeric C-bands on several m-sm chromosomes (Boron 1999). C. phrygica and C. simplicispina also show similarity with S. aurata that centromeric C-bands on some chromosomes have been reported before (Boron 2000). However, telomeric C-bands additionally to pericentromeric C-bands that were reported in this species (Boron 2000) are not observed in C. phrygica and C. simplicispina. Moreover, C. phrygica and C. simplicispina are similar to Misgurnus fossilis in the same family which has pericentromeric C-bands on some chromosomes (Boron 2000).

The number and locations of Ag-NORs have been used as a systematic and taxonomic character and these characters benefit to fish cytotaxonomy (Boron 1999). The karyotype and Ag-NOR phenotypes appears to be highly variable in the Cobitis (Rab et al. 2007). It was reported that two Ag-NORs were detected on some Ag-staining (Arai 2011). About C. simplicispina and C. phrygica reported that two Ag-NORs were detected on some chromosomes (Rab et al. 2001). In addition, C. phrygica and C. simplicispina show similarity to C. elazigensis and C. vardarensis but localization of Ag-NORs seems different from these species (Madeira et al. 1992, Rabova et al. 2001). In addition, C. phrygica and C. simplicispina share similar property with C. elazigensis and S. aurata which has one pair of Ag-NOR bearing chromosomes (Boron 2000, Değer 2011). Also, C. phrygica and C. simplicispina share the same Ag-NOR number with C. taenia but there are differences in Ag-NOR localization (Boron 1999). Otherwise, Ag-NOR number polymorphisms that were reported in C. elongatoïdes (Rab et al. 2000) and C. vardarensis (Rabova et al. 2001) was observed in C. simplicispina.

Detailed chromosomal studies should be carried out on the other Cobitis species that are distributed in Anatolia shall be better to understand the systematics and taxonomy of this genus.

Acknowledgements

The authors are thankful to Dr. S. Cevher Özeren (Ankara University, Turkey) and Dr. S. Serkan Güçlü (Süleyman Demirel University, Turkey) for identifying the specimens. We also thank to Prof. Atilla Arslan (Selçuk University, Turkey) for his valuable comments and suggestions on the manuscript.

References


