Detailed Investigations on Cytotaxonomical Perspectives in *Nitella hyalina* Complex (Charales: Charophyceae)

H. S. Pundhir* and A. K. S. Chauhan

Department of Botany, D.S. College, Aligarh-202001, India

Accepted February 5, 2001

Summary Present paper deals with the detailed morphological, cytological and cytotaxonomical studies on 3 cytotypes of *N. hyalina f. hyalina*, collected from Mudasarilova tank (Visakhapatnam), Sakhya Sagar dam (Shivpuri) and Tighra dam (Gwalior). The cytological preparations reveal the occurrence of chromosomes counts of $n=15, 18$ and 21, respectively. Count of 3 chromosomes numbers in 3 different cytotypes clearly established polyploidy in this taxon, if $x=3$ considered as the ancestral number. It was found that polyploidy is certainly associated with the morphological diversifications. As the chromosome numbers increased certain additional characters appeared, while, with reduction in chromosome numbers these additional characters have not been observed.

Key words Cytology, Cytotaxonomy, *Nitella hyalina f. hyalina*, Chromosome counts, Polyploidy

The tribe Nittelleae of the order Charales (Class Charophyceae) constitute an interesting group of green algae, showing some unique characteristic features like uncorticated plant body, monopodially divided branchlet furcations and lateral oogonia with 10-celled coronula in 2-tiers. Systematics of this group was widely described by Faridi (1956), Wood (1965), Corillion and Guerlesquin (1972), Caceres (1975), Compere (1982), Fu-shan and Hualong (1982), Comelles (1984), Hotchkiss and Imahori (1987), Pundhir *et al.* (1994) and others. Although large number of species of this group were studied for their cytology by several workers such as Gillet (1959), Sawa (1965), Khan and Sarma (1967a), Kanahori (1971), Mukherjee and Noor (1973), Ray and Chatterjee (1988), Pundhir and Gautam (1993) and Pundhir *et al.* (1993), very few attempts have been made to analyse them cytosystematically. In the present investigation, detailed cytotaxonomical studies were carried out on 3 cytotypes of *Nitella hyalina* (DeCandolle) Agardh *f. hyalina* found at 3 different ploidy level exhibited interesting correlations between cytotaxonomical and morphological characters.

Materials and methods

Living specimens of *Nitella hyalina f. hyalina* were collected from Mudasarilova tank (Visakhapatnam), Sakhya Sagar dam (Shivpuri) and Tighra dam (Gwalior), during Dec. 1991 to Jan. 1992. Young growing fertile upper healthy tips were fixed in absolute alcohol glacial acetic acid (3:1) for cytological studies. Plants were further preserved in 4% formalin for morphological observations. Identification was made following Wood (1965). Godward's (1948) iron-alum acetocarmine technique was employed for squashing spermatogenous antheridal filaments. Chromosome numbers were determined at metaphase when the chromosomes are found to be highly condensed and well spread. Camera lucida drawings and corresponding photographs were taken from temporary preparations. Slides were made permanent using propionic acid-butanol series and mounted in euperal. Voucher specimens and permanent slides are deposited in Cytology Laboratory, D.S. College, Aligarh (U.P.), India.

* Corresponding author, permanent address: Rohina Singh Pur, Khera Narain Singh, Aligarh-202121 (U.P.), India.
Table 1. Comparative morphology of *Nitella hyalina* (DeCandolle) Agardh f. hyalina

<table>
<thead>
<tr>
<th>Plant parts</th>
<th>Tighra plants</th>
<th>Mudasarilova plants</th>
<th>Sakhya Sagar plants</th>
<th>Wood (1965)</th>
</tr>
</thead>
<tbody>
<tr>
<td>Plant sex</td>
<td>Monoeocious</td>
<td>Monoeocious</td>
<td>Monoeocious</td>
<td>Monoeocious</td>
</tr>
<tr>
<td>Plants height</td>
<td>Upto 8.0 cm, small to medium in size</td>
<td>Upto 14 cm, small to medium in size</td>
<td>Upto 4.0 cm, small size</td>
<td>Medium size</td>
</tr>
<tr>
<td>Mucus presence</td>
<td>Upper whorls covered with mucus</td>
<td>Upper whorls densely covered with mucus</td>
<td>Whole plant body densely covered with mucus</td>
<td>Upper whorls often crowded and covered with mucus</td>
</tr>
<tr>
<td>Axes</td>
<td>Slender</td>
<td>Slender</td>
<td>Slender</td>
<td>Slender</td>
</tr>
<tr>
<td>Internodes</td>
<td>1–4 times as long as the branchlets</td>
<td>1–8 times as long as the branchlets</td>
<td>Shorter to 2 times as long as the branchlets</td>
<td>2–4 times as long as the branchlets</td>
</tr>
<tr>
<td>Branchlets</td>
<td>Heteroelomous, fertiles 8 in a whorl</td>
</tr>
<tr>
<td>Furcations</td>
<td>2–4 furcated</td>
<td>3–4 furcated</td>
<td>2–3 furcated</td>
<td>2–(3–4) furcated</td>
</tr>
<tr>
<td>Primary rays</td>
<td>2/3–3/4 times of branchlets</td>
<td>1/2–3/4 times of branchlets</td>
<td>3/5–3/4 times of branchlets</td>
<td>1/2–3/5 times of branchlets</td>
</tr>
<tr>
<td>Secondary rays</td>
<td>7–8 (of which 1–2 may unfurcated)</td>
<td>8 of which all are furcated</td>
<td>8–10 of which 2–4 unfurcited</td>
<td>7–10 of which 1–3 are simple</td>
</tr>
<tr>
<td></td>
<td>with percurrent central axis which</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td></td>
<td>developed into branchlets</td>
<td></td>
<td></td>
<td></td>
</tr>
<tr>
<td>Tertiary rays</td>
<td>5–7 of which 3–5 may unfurcated</td>
<td>6–8 of which 3 are simple</td>
<td>6 of which 4–5 may unfurcated</td>
<td>4–7 of which 1–2 may unfurcate</td>
</tr>
<tr>
<td>Quaternary rays</td>
<td>5–6</td>
<td>6 of which 1–2 unfurcated</td>
<td>6</td>
<td>4–5</td>
</tr>
<tr>
<td>Quanary rays</td>
<td>3–5</td>
<td>4–6</td>
<td>—</td>
<td>4–6, 2-celled; end cell conical, acute, mucronate, confluent</td>
</tr>
<tr>
<td>Dactyls</td>
<td>3–5, 2-celled; end cell conical, acute, very much reduced, mucronate</td>
<td>6, 2-celled; end cell conical, confluent</td>
<td>6, 2-celled; end cell conical, acute, mucronate, sometimes confluent</td>
<td></td>
</tr>
<tr>
<td>Heads</td>
<td>Terminal with dense mucus</td>
<td>Not formed, but upper whorls densely covered with mucus</td>
<td>Formed with dense mucus</td>
<td>Not formed, but upper whorls may become crowded and often enveloped in mucus</td>
</tr>
<tr>
<td>Gametangia</td>
<td>Stalked, conjoined or sejomed at 2–4 nodes</td>
<td>Sessile, conjoined at all branchlet furcations</td>
<td>Stalked, conjoined at 2 lowest branchlet nodes</td>
<td>Conjoined at all branchlet furcations</td>
</tr>
<tr>
<td>Coronula</td>
<td>Unequal, 30–45 μm high, 45–60 μm wide</td>
<td>Unequal, 45–60 μm high, 45–60 μm wide</td>
<td>Unequal, 30–45 μm high, 45–60 μm wide</td>
<td>45–60 μm high, 60 μm wide</td>
</tr>
<tr>
<td>Anthëridia</td>
<td>285–345 μm in diameter</td>
<td>270–360 μm in diameter</td>
<td>270–345 μm in diameter</td>
<td>350–425 μm in diameter</td>
</tr>
</tbody>
</table>
Results and discussion

Morphological observations of all the 3 cytotypes are summarized in Table 1. Detailed comparative cytology and cytotaxonomy has been given in Table 2.

Indian specimens belonging to *Nitella hyalina f. hyalina* are highly conspicuous having heteroclemous branchlets and arthrodactylous dactyls covered with thick layer of mucus which provided to these, a characteristic hyaline appearance (Table 1). They possess 2 rows of accessory branchlets in contrast to another heteroclemous species, *N. stuartii* (Wood 1965) which is having only 1 row of accessory branchlets and anarthrodactylous dactyls.

Three cytotypes of *N. hyalina f. hyalina* collected from Tighra dam, Mudasarilova tank and Sakhya Sagar dam were studied for their cytological features and revealed the occurrence of \(n = 15 \) (Figs. 1, 2), \(n = 18 \) (Figs. 3, 4) and \(n = 21 \) (Figs. 5, 6) chromosomes, respectively. The count of \(n = 15 \) in Tighra plants confirms the finding of Mukherjee (1978) and count of \(n = 21 \) in Sakhya Sagar dam plants confirms the report of Bhatnagar (1988). The chromosome number \(n = 18 \) determined for Mudasarilova plants is in agreement with the counts of Sato (1959), Guerlesquin (1961, 1963), Hotchkiss (1965), Sarma and Khan (1964, 1965), Khan and Sarma (1967b), Ramjee and Sarma (1971) and Ramjee and Bhatnagar (1978). The reports of \(n = 12 \) (Sato 1959, Sinha and Verma 1970, Subramanian and Ganesan 1983), \(n = 12–14 \) (Stewart 1937), \(n = 14 \) (Sato 1959), \(n = 16 \) (Gillet 1959) and \(n = 33 \) (Das and Majumdar 1984) could not be confirmed in the present study. The count of different chromosome numbers (\(n = 15, 18, 21 \)) during present study alongwith other counts (\(n = 12, 33 \)) (Sato 1959, Sinha and Verma 1970, Subramanian and Ganesan 1983, Das and Majumdar 1984) are fit in euploid series of \(n = 6, 9, 12, 15, 18, 21, 24, 27, 33, 36, 48 \) and therefore, uphold the view of \(x = 3 \) as the proposed basic chromosome number for this genus (Sarma and Khan 1964, 1965, Khan and Sarma 1967b). The count of \(n = 14 \) by Stewart (1937) and Sato (1959) might be counting error or may be represent the heteroploidy in this taxon.

Gillet (1959) suggested \(x = 6 \) as the basic chromosome number for *Nitella* which was supported by Hotchkiss (1963). Guerlesquin (1961) has, however, suggested 6 and 7 as the basic chromosome numbers for this genus. For arthrodactylous forms, an additional basic chromosome number \(x = 9 \) was suggested by Hotchkiss (1963). But the occurrence of \(n = 9 \) chromosome number in an anarthrodactylous form *N. mirabilis* reported by Ramjee and Bhatnagar (1978) contradicted the above generalization.

It is interesting to note that the cytological features other than chromosomal morphology and numbers, are, almost alike in the 3 populations of *N. hyalina f. hyalina*. The chromosomes are fairly
small to large in the plants of Sakhya Sagar dam and Tighra dam but they are small to medium in Mudasarilova plants. The diameter of nucleolus is small in lowest chromosome number \(n=15\) while large in highest chromosome number \(n=21\) consisting plants. It shows some relationship between number of chromosomes and size of nucleolus (Table 2).

Karyotypic analysis shows that karyotype of Mudasarilova plant (Fig. 8) resembles the karyotype of Sakhya Sagar dam plant (Fig. 9) while the karyotype of Tighra plant (Fig. 7) differs with the karyotypes of these plants in lacking median chromosomes. It might be due to reduction in chromosome number from 18 or 21 to 15. The origin of 15 chromosomal form leads the suspicion and might be through the hybridization between \(n=12\) and \(n=18\) chromosomal form of its polyploid races.

Polyploidy is certainly associated with the phenotypic variations. It is evidenced in the present observations on \(N.\) hyalina f. hyalina. Cytotype with 21 chromosomes shows stalked gametangia and confluent to mucronate dactyls, whereas, the material showing 15 chromosomes was found to have stalked gametangia, mucronate dactyls and reticulate oospore wall ornamentation in contrast to the Mudasarilova plants which possess sessile gametangia, confluent dactyls and granulate

Figs. 1–6. Chromosome numbers at metaphase plate in \(Nitella\) hyalina f. hyalina (×2400). 1) Chromosome number in Tighra plants \((n=15)\). 2) Reconstruction of Fig. 1. 3) Chromosome number of Mudasarilova plants \((n=18)\). 4) Reconstruction of Fig. 3. 5) Chromosome number in Sakhya Sagar dam plants \((n=21)\). 6) Reconstruction of Fig. 5.
oospore wall ornamentation characterised by 18 chromosomes. Rest of the characters in all the 3 cytotypes agree with the Wood (1965) description (Table 1).

A study of oospores wall ornamentation for various species of the genus *Nitella* was conducted by John and Moore (1978). They have been described the oospore wall ornamentation of the species *N. hyalina* as “finely punctate or granulate and often obscurely reticulate under light microscope. Under SEM it consists of anastomosing fibrils with loosely arranged fossa. They are occasionally flattened. These fibrils extend up onto the striae where they are more dense and often laterally fused. The 6 to 8 striae are thin but prominent and without a flange.” It has to be mentioned here that these studies are based on herbarium and 4% formalin liquid preserved material deposited in British Museum (Natural History), London. They were not subjected for cytomorphological studies and are arranged according to Braun (1882) on gross morphological features. There is possibility that they are randomly collected and might be mixed cytotypes of reticulate, granulate and finely granulate oospore wall ornamentation consisting plants bearing *n* = 15, 18 and 21 chromosomes, respectively, recorded during the present study.

Acknowledgements

Authors are grateful to Principal for providing necessary facilities and to C.S.I.R., New Delhi, for financial assistance.

References

H. S. Pundhir and A. K. S. Chauhan

