A Synthesis Procedure for Deadbeat Servo System

Yasuyuki Funahashi

Synopsis

The deadbeat tracking problem and the deadbeat servo problem are considered for discrete-time linear systems. The plant and the reference are described by a difference equation. The problems are solved in the framework of exact model matching problem. The desired models for deadbeat tracking and deadbeat servo are specified first and then the system is realized as a generalized feedback control that admits both the plant output and the reference variable as input. The class of deadbeat tracking controller and the deadbeat servo are shown explicitly. It is also shown that this generalized feedback is general enough to alter the dynamic behaviour of the plant almost at will.
古典フィードバック制御系では制御誤差にもとづいて制御入力の構成している。第2節ではフィードバックの一般化を行う。3節では希望の特性をいかにして一般化フィードバックで実現するかを示す。これらは文献9のモデル・マッチング法のデジタル版であるが、デジタル制御特有の性質を加味して簡単な設計法が得られている。4節では以上の結果を用いて有限発生時間サーボ系を構成する。

2. 一般化フィードバック制御

制御しようとする物理量を出力で、操作しようとする物理量を入力とする。また、サンプル周期は正規化して1と考え、t番目のサンプル時刻での値を\(y(t) \)、\(u(t) \)で表わす。このとき、制御対象の動特性は線形の場合としきの差分方程式で一般に記述される。

\[
y(t) = a_1 y(t-1) - a_2 y(t-2) - \cdots - a_n y(t-n) + b_1 u(t-1) + b_2 u(t-2) + \cdots + b_n u(t-n), \quad t = 0, 1, 2, \ldots
\]

（2.1）

遅れ作用素\(d \)あるいは\(z^{-1} \)を導入する。

\[
d^i y(t) = z^{-i} y(t-i), \quad i = 1, 2, \ldots
\]

（2.2）

遅れ作用素\(d \)を用いて（2.1）を書きなおせば

\[
y(t) = \frac{b_0 + b_1 d + \cdots + b_n d^n}{a_0 + a_1 d + \cdots + a_n d^n} u(t)
\]

（2.3）

と形式的に書くことができる。つまりの作用素

\[
T(d) = b(d)(d^n + \cdots + b_n d + a_0 d + \cdots + a_n d^n) u(t)
\]

（2.4）

をパルス伝達関数という。\(b_1 \sim b_n \)のうち最初の非零要素が\(i \)番目のとき、即ち\(b_1 = b_2 = \cdots = b_{i-1} = 0 \)で\(b_i \neq 0 \)のとき、\(i \)を“むだ時間”といい、

\(\#(T(d)) \)で表わす。

\(y(t) \)を目標値\(v(t) \)になるべく一致するような制御入力\(u(t) \)を発生する装置を作るのが目的である。このとき利用できる信号は\(\{ u(t-1), u(t-2), \ldots ; v(t), y(t-1), \ldots ; v(t), y(t-1), \ldots \} \)であるから、線形演算の範囲ではつぎの式がもっとも一般的である。

\[
u(t) = -p_1 u(t-1) - p_2 u(t-2) - \cdots - p_m v(t-m) - q_1 y(t-1) - q_2 y(t-2) - \cdots - q_m y(t-m) + r_1 v(t) + r_2 v(t-1) + \cdots + r_m v(t)
\]

（2.5）

ここで次数\(m \)はあらかじめ与えられるか、あるいは必要に応じて決まるものである。

\[
p(d) = 1 + p_1 d + \cdots + p_m d^m
\]

\[
q(d) = 1 + q_1 d + \cdots + q_m d^m
\]

\[
r(d) = 1 + r_1 d + \cdots + r_m d^m
\]

（2.6）

とすれば（2.5）は

\[
u(t) = -\frac{q(d)}{p(d)} y(t) + \frac{r(d)}{p(d)} v(t)
\]

（2.7）

を書くことができる。

（2.3）のプラントに（2.7）を代入すれば

\[
y(t) = \frac{b(d)}{a(d)} \left(-\frac{q(d)}{p(d)} y(t) + \frac{r(d)}{p(d)} v(t) \right)
\]

（2.8）

すなわち

\[
y(t) = \frac{b(d) r(d)}{a(d) p(d) + b(d) q(d)} v(t) \equiv W(d) v(t)
\]

（2.9）

を得る。目標値\(v(t) \)から制御量\(y(t) \)への伝達関数\(W(d) \)は

\[
W(d) = \frac{b(d) r(d)}{a(d) p(d) + b(d) q(d)}
\]

（2.10）

を（2.7）に代入して\(y(t) \)を消去すれば

\[
u(t) = -\frac{a(d) r(d)}{a(d) p(d) + b(d) q(d)} v(t)
\]

（2.11）

を得る。ブロック線図はFig.2の(a)である。理解してほしいように遅れ要素\(d \)を\(2m \)個用いて表したのがFig.2(c)である。\(q(d) = r(d) \)とすれば従来のフィードバック制御系が得られる。Fig.2(c)では目標値から制御入力\(u(t) \)へ前向きに\(q(d) \)を用いる方法で表すことができる。
Fig. 1 Classical feedback control system.

Fig. 2 Generalized feedback control systems.

- \(r(d)/p(d) \) の伝達関数が付加されていることがわかる。この意味で (2.7) を「一般化フィードバック」と呼ぶことにする。

3. モデル・マッチング

一般化フィードバック則 (2.7) を用いて得られる伝達関数 \(W(d) \) は (2.9) をみたし、かつ \(W(d) \) の分母は \(d=0 \) で 1 になっている。このことは \(W(d) \) が (2.1) のような形で与えられ、したがってマイクロ・コンピュータなど実現できるものを示している。本節では、\(u(t) \) から \(y(t) \) への好ましい応答特性が得られたとき、それを一般化フィードバックで実現する問題を考える。好ましい応答特性が \(\beta(d)/a(d) \), \(a(0)=1 \) という伝達関数で与えられたとすれば、

\[
\begin{align*}
\text{i) } & \quad \frac{b(d)r(d)}{a(d)p(d)+b(d)q(d)} = \beta(d) \\
\text{ii) } & \quad p(0)=1
\end{align*}
\]

をみたす 3 つの多項式を求めることである。

以下で必要となる「多項式に関する定理」を引用する。

＜定理3.1＞

(1) 多項式 \(a(d), b(d), c(d) \) が与えられたとき、

\[
a(d)f(d)+b(d)g(d)=c(d)
\]

を満たす多項式 \(f(d), g(d) \) が任意の \(c(d) \) に対して存在するための必要十分条件は、\(a(d) \) と \(b(d) \) が共通因子を持たない（互いに素）である。

(2) \(a(d) \) と \(b(d) \) が互いに素であるとき、
$g(d)$ の次数 $\text{deg} g(d)$ が $a(d)$ の次数 $n = \text{deg} a(d)$ より小さな条件の下では (3.2) の解は一意に決まる。その解

$$f_{\ast}(d) = f_0 + f_1 d + \cdots + f_d d^d$$

$$g_{\ast}(d) = g_0 + g_1 d + \cdots + g_{n-1} d^{n-1}$$

の係数はつぎの式で与えられる。

$$\begin{bmatrix} a_0 & 0 & 0 & b_0 & 0 \\ a_1 & a_0 & 0 & b_1 & 0 \\ \vdots & \vdots & \vdots & \vdots & \vdots \\ a_n & \cdots & a_1 & b_n & 0 \end{bmatrix} \begin{bmatrix} f_0 \\ f_1 \\ \vdots \\ c_n \end{bmatrix} = \begin{bmatrix} c_0 \\ c_1 \\ \vdots \\ c_{n-1} \end{bmatrix}$$

(3.3)

ここで $l = \text{deg} f_{\ast}(d)$ は

$$\text{deg} c(d) \geq \text{deg} a(d) b(d)$$

のとき

$$l = \text{deg} c(d) - \text{deg} a(d)$$

$$\text{deg} c(d) < \text{deg} a(d) b(d)$$

のとき

$$l = \text{deg} b(d)$$

であり、$c_i = 0 \quad \forall i > \text{deg} c(d)$ である。

(3) $a(d)$, $b(d)$ が互いに素であるとき、(3.2) の一般解は

$$f(d) = f_{\ast}(d) - \phi(d) b(d),$$

$$g(d) = g_{\ast}(d) + \phi(d) a(d)$$

(3.4)

で与えられる。ここで $\phi(d)$ は任意の多項式である。

この定理を用いて (3.1) を解くことができる。

＜定理 3.2（モデル・マッチング）＞

$$\hat{\beta}(d)/\hat{a}(d) \geq \hat{\beta}(d)/\hat{a}(d)$$

とする。

ステップ 1: $\beta(d)/a(d) b(d)$ を作り、既約な形にする。すなわち,

$$\beta(d)/a(d) b(d) = \pi(d)/c(d)$$

(3.5)

$\pi(d)$ と $c(d)$ は互いに素で、$c(0) = 1$ とする。

ステップ 2: $a(d) p(d) + b(d) q(d) = c(d)$

(3.6)

をみたす多項式解のうち $\text{deg} q(d) \leq n-1$ のものを求める。これを $p_{\ast}(d)$, $q_{\ast}(d)$ とする。

ステップ 3: $r_{\ast}(d) = \pi(d)$ とする。

以上により $p_{\ast}(d) u(t) = -q_{\ast}(d) y(t)$

$$+ r_{\ast}(d) v(t)$$

を用いて $T(d) = b(d)/a(d)$ から $\beta(d)/a(d)$ が達成される。

物理的実現可能であるためには $p_{\ast}(0) = 1$ を確かめなくてはならない。$b(d) = d^i b_i(d)$; $b(0) = 0$, $\beta(d) = d^i \beta_i(d)$; $\beta(0) = 0$ とするとき仮定よりも $l_2 \geq l_1$ である。したがって

$$\beta(d) = \frac{d^{i+1} b_{i+1}(d)}{a(d) b_{i+1}(d)} = \frac{d^{i+1} b_i(d) b_i(0)}{a(d) b_i(0) b_i(0)}$$

から $b_{i+1}(0) = 1$ であることを示すことができる。このとき $b(0) = 0$ より (3.6) から $p_{\ast}(0) = 1$ が保証される。

以上の手順で得られるフィードバック制御系の安定性は多項式 $c(d)$ によって決まる。$c(d) = 0$ の根がすべて単位円内にあれば制御系は安定であり、ひとつの根でも単位円外または単位円内にあれば $|d| \geq 1$, 不安定である。安定であるためには

$$b(d) = b_i(d) b_u(d)$$

(3.7)

$b(0) = 0$ の根がすべて単位円内にある。

$b_u(d) = 0$ の根がすべて単位円内及び円上にある。

と分解したとき、$b_u(d)$ が $c(d)$ に表われないことである。したがってつぎの定理を得る。

＜定理 3.3（安定な制御系）＞

伝達関数 $\beta(d)/a(d); a(0) = 1$ が制御対象

$T(d) = b(d)/a(d)$ に一般化フィードバックを施して、安定な系として達成できるための必要十分条件はつぎの (i), (ii)である。

(i) $a(d)$ が安定な多項式である。

(ii) $\beta(d)$ が $b_u(d)$ を因子に含む。

(3.5) の $c(d)$ に $b_u(d)$ の一部でも残れば、その部分は極一零点消去で打ち消される極となる。パラメータ変動を考慮すれば極一零点消去は避けた方がよい。

＜系（極一零点消去のないモデル・マッチング）＞

極一零点消去のない、安定なフィードバック系として達成できるための条件はつぎの (i), (ii)である。

(i) $a(d)$ が安定な多項式である。

(ii) $\beta(d)$ が $b(d)$ を因子に含む。
4. 有限定常時間サーボ系

前節の結果を用いて

(i) 目標値を \(v(t) \) に有限時間で制御対象の出力を \(y(t) \) を完全に追従させる有限定常時間トラッキング系

(ii) 目標値がある関数のいかなるものであっても有限時間で完全に追従する有限定常時間サーボ系を構成する。

まず、目標値 \(v(t) \) の \(d \) 変換したものを、 \(\text{i.e.} \)

\[v(d) = v(0) + v(1)d + v(2)d^2 + \cdots \]

が2つの多項式の比 \(k(d)/h(d) \) で与えられるものをとする。このとき有限定常時間トラッキング系となるための伝達関数 \(W(d) = b(d)/a(d) \) を求める。

\[
e(d) = v(d) - y(d) = v(d) - W(d)v(d) = \frac{a(d) - \beta(d)}{a(d)} \frac{k(d)}{h(d)}
\]

一方で、

\[e(d) = e(0) + e(1)d + e(2)d^2 + \cdots \]

であり、有限定常時間応答であるとは有限な時刻 \(N \) に対して

\[e(t) = 0 \quad t = N, N+1, N+2, \ldots \]

が成立することである。すなわち \(e(d) \) が \(d \) の多項式になることである。\((4.1) \) が多項式となるには、

i) \(a(d) \) が安定であることから \(a(d) = k(d) \)

ii) \(a(d) - \beta(d) = k(h(d)) \) となることである。ここで \(k(d) \) は \(k(d) \) の安定な根からなる部分を表わす \((3.7) \) 参照。このとき、\(e(d) = \xi(d)k(d) \) となる。また極一つ点消去を生じないためには

iii) \(\beta(d) = b(d) \tilde{\beta}(d) \) となる。

でなくてはならない。以上により、特定の目標値 \(v(d) = k(d)/h(d) \) に有限時間で完全追従するには

\[W(d) = \frac{b(d)\tilde{\beta}(d)}{k(d)} \]

だけである。\(h(d)\xi(d)+b(d)\tilde{\beta}(d) = k(d) \) (4.3)

でなくてはならない。この伝達関数を定理3.2により一般化フィードバックで表現するときの結果を得る。

＜定理4.1 (有限定常時間トラッキング系)＞

制御対象 \(T(d) = b(d)/a(d) \) の出力 \(y(t) \) をある目標関数 \(v(d) = k(d)/h(d) \) に有限時間で完全追従できるための必要十分条件は

\[h(d) \) と \(b(d) \) が互いに素であることである。このとき,

\[
a(d)p(d) + b(d)q(d) = k(d) \quad (4.4)
\]

\[
h(d)\xi(d) + b(d)r(d) = k(d) \quad (4.5)
\]

の解 \(\{p(d), q(d), r(d)\} \) により一般化フィードバック系として構成することができる。制御誤差は

\[e(d) = \xi(d)k(d) \quad (4.6) \]

であるから,

\[e(t) = 0 \quad \forall t \geq \text{deg} \xi(d)k(d)+1 \]

したがって定時を最小にするには (4.9) の

＜定理4.2 (有限定常時間サーボ系)＞

制御対象 \(T = b(h)/a(h) \) の出力 \(y(t) \) を \(k(d)/h(d) \) は任意の多項式 \(k(d) \) のクラスの目標関数に有限時間で完全定常できるための必要十分条件は

\[h(d) \) と \(b(d) \) が互いに素であることである。このとき,

\[
a(d)p(d) + b(d)q(d) = e(d) \quad (4.8)
\]

\[
h(d)\xi(d) + b(d)r(d) = 1 \quad (4.9)
\]

の解 \(\{p(d), q(d), r(d)\} \) により一般化フィードバック系として構成することができる。制御誤差は

\[e(d) = \xi(d)k(d) \quad (4.6) \]

であるから,

\[e(t) = 0 \quad \forall t \geq \text{deg} \xi(d)k(d)+1 \]

したがって定時を最小にするには (4.9) の
解 \(\xi(d) \) の次数が最小となるものを用いる。

5. 例 題

4 節の理論を用いて、つぎの不安定なディジタル・システムの出力を
目標値：1, 1.8, 2.6, 3.4, 4.2, 5.0, 5.8, …
に有限時間で安定するコントローラを構成する。

\[
T(d)=\frac{b(d)}{a(d)} \frac{d^2+d}{(1-d)(1-2d)} \tag{5.1}
\]

\(v(d) = 1 + 1.8d + 2.6d^2 + 3.4d^3 + 4.2d^4 + 5.9d^5 + \cdots \)

であるから有理式で表わせば

\[
\frac{1-0.2d}{(1-d)^2} = \frac{k(d)}{h(d)}
\]

よって \(k_1(d)=1-0.2d, \ deg \ k_1(d)=1<\deg a(d)b(d)=4 \) であるから定理3.1(2)より \(p(d)=p_0+p_1d, q(d)=q_0+q_1d \) として求めることができる。

\[
(1-3d+d^2)(p_0+p_1d)+(d+d^2)(q_0+q_1d)=1-0.2d
\]

これを解いてつぎの数値を得る。

\[
p_0=1 \quad p_1=0.76 \quad q_0=2.04 \quad q_1=-0.76
\]

同様に

\[
(1-2d+d^2)(\xi_0+\xi_1d)+(d+d^2)(\xi_0+\xi_1d)=1-0.2d
\]

これを解いてつぎの数値を得る。

\[
p_0=1 \quad p_1=0.76 \quad q_0=2.04 \quad q_1=-0.76
\]

で与えられる。すなわち,

\[
u(t)=-0.76u(t-1)-2.04y(t)+0.76y(t-1)+1.1y(t)-0.7y(t-1)
\]

このときの誤差と入力力系は

\[
e(d)=1+0.7d
\]

\[
u(d)=\frac{1-2d(1,1-0.7d)}{1-d}
\]

\[
e(0)=1 \quad e(1)=0.7 \quad e(2)=e(3)=\cdots =0
\]

\[
u(0)=1.1 \quad u(1)=-1.8 \quad u(2)=u(3)=\cdots =-0.4
\]

で、2 時刻で安定していることがわかる。

なお文献11)では古典的なフィードバック則、すなわち \(u(t)=(q(d)/p(d))e(t) \) で有限安定を考