The use of easily debondable orthodontic adhesives with ceramic brackets

Chiyako RYU¹, Yasuhiro NAMURA¹,², Takashi TSURUOKA¹, Tomohiko HAMA¹, Kaori KAJI³ and Noriyoshi SHIMIZU¹,²

¹Department of Orthodontics, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
²Division of Clinical Research, Dental Research Center, Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan
³Nihon University School of Dentistry, 1-8-13 Kandasurugadai, Chiyoda-ku, Tokyo 101-8310, Japan

Corresponding author, Yasuhiro NAMURA; E-mail: namura-y@dent.nihon-u.ac.jp

We experimentally produced an easily debondable orthodontic adhesive (EDA) containing heat-expandable microcapsules. The purpose of this in vitro study was to evaluate the best debondable condition when EDA was used for ceramic brackets. Shear bond strengths were measured before and after heating and were compared statistically. Temperatures of the bracket base and pulp wall were also examined during heating. Bond strengths of EDA containing 30 wt% and 40 wt% heat-expandable microcapsules were 13.4 and 12.9 MPa, respectively and decreased significantly to 3.8 and 3.7 MPa, respectively, after heating. The temperature of the pulp wall increased 1.8–3.6°C after heating, less than that required to induce pulp damage. Based on the results, we conclude that heating for 8 s during debonding of ceramic brackets bonded using EDA containing 40 wt% heat-expandable microcapsules is the most effective and safest method for the enamel and pulp.

Keywords: Bond strength, Debonding, Microcapsule, Orthodontic adhesive

INTRODUCTION

Adhesives used with orthodontic brackets require not only sufficient bond strength to withstand mastication and orthodontic forces, but also sufficient moderation to allow debonding, because excessive bond strength usually results in intense pain and/or enamel fractures. Retief¹ stated that enamel fractures can occur with bond strengths as low as 13.5 MPa. Although wide ranges of bond strengths using ceramic brackets have been reported, some investigators²-⁴ have reported forces in excess of 29.4 MPa. Redd and Shivapuja⁵ also reported that enamel damage was more likely to result from debonding ceramic brackets than from debonding stainless-steel brackets, because most bond failures associated with enamel damage were generated at the enamel/adhesive interface. Additionally, ceramic brackets are more difficult to remove from the teeth because the wings of the bracket base may break and remain in place.

Several attempts to solve problems such as enamel surface damage during debonding have been reported. Boyer et al.⁶ tested ultrasonic debonding, Brouns et al.⁷ examined thermal debonding, and other researchers⁸-¹¹ have explored the use of laser devices. Each of these methods has associated problems, such as lengthy treatment times, excessive heating, and expensive devices. Tsuruoka et al.¹² developed an easily debondable adhesive (EDA) containing heat-expandable microcapsules and demonstrated that bond strengths decreased by about one-third after 8–10 s of heating when the EDA was used with stainless-steel brackets. However, the heat conductivity of a ceramic bracket, which is generally thicker and larger than a stainless-steel bracket to avoid fracture, would differ from that of a stainless-steel bracket. The size and design of the bracket influence heat conductivity. Ceramic brackets are also more difficult to remove from the teeth, as described above. Thus, the application of EDA to ceramic brackets would be more reasonable than application to stainless-steel brackets. The purpose of this in vitro study was to evaluate the best debondable conditions when EDA and ceramic brackets were used.

MATERIALS AND METHODS

Easily debondable materials

The base bonding material used in this experiment was 4-META/MMA-TBB resin adhesive (Orthomite SuperBond, Sun Medical, Moriyama, Japan), which has polymer and monomer components. To prepare the EDA powder, we mixed thermo-expandable microcapsules (Matsumoto Microsphere F-36D, Matsumoto Yushi-Seiyaku, Osaka, Japan) into the polymer powder, according to the method of Tsuruoka et al.¹².

Measurement of temperature at the adherent surface of the bracket base

The brackets were heated with a heater (Ultra Five Heater, Hakko, Nagano, Japan) set at 300°C. Bracket base temperatures of the ceramic (Crystaline IV, Tomy International, Tokyo, Japan) and stainless-steel (New DynaLock, 3M Unitek, Monrovia, CA, USA) brackets were measured with a K-type thermocouple (Okazaki Manufacturing, Kobe, Japan) (Fig. 1). Bracket thicknesses were 2.15 mm (ceramic) and 1.80 mm (stainless steel).

Tooth specimens and bracket bonding

Freshly extracted bovine permanent mandibular incisors
(n=112) were collected from a slaughterhouse. The criteria for tooth selection were intact labial enamel (lacking fractures caused during extraction) and absence of caries. The teeth were divided randomly into eight groups of eight specimens each, corresponding to the number of variables tested.

Soft tissues were removed from each tooth. After separating the crown from the root, the pulp was extirpated and the crown was stored in distilled water until further use. The crown was then embedded in self-curing acrylic resin (Tray Resin, Shofu, Kyoto, Japan) to facilitate its placement in the testing machine. The labial surface of each crown was flattened to facilitate the application of shearing force and polished with waterproof silicon-carbide papers (#400, #600), as described previously

Shear bond strength measurement

All samples were tested in shear mode on a universal testing machine (5567, Instron, Norwood, MA, USA). Specimens (n=8) were secured in the lower jaw of the machine with the bracket base parallel to the shear force, then stressed in an occlusogingival direction at a crosshead speed of 1 mm/min.

Assessment of residual adhesive

After the measurement of shear bond strength, each specimen was examined under an optical microscope (SZ-3003; As one, Osaka, Japan) at 15× magnification to identify the fracture pattern of the bonded surface. The residual adhesive on each tooth was assessed using the adhesive remnant index (ARI)

Measurement of temperature increase in the pulp chamber

To evaluate the temperature increase in the pulp chamber during heating, we used four fresh human permanent first premolars that had been extracted during orthodontic treatment. The protocol for this experiment was reviewed and approved by the Ethics Committee of the Department of Dentistry, Nihon University. The extracted teeth were stored in distilled water at 4°C until use. Brackets were bonded to the teeth with bonding material containing 40 wt% microcapsules. Each tooth was drilled with an air turbine from the lingual cemento-enamel junction toward the labial bonded bracket. The sensor head (0.5 mm diameter) of a K-type thermocouple was then placed in contact with the inner surface of the pulp wall, facing the labial surface where the bracket was bonded. The average distance from the labial surface to the pulp wall was 3.62 mm. After heating for 8, 10, and 12 s, the heated bracket was cooled immediately with water. The
temperature of the inner surface of the pulp wall was measured at a room temperature of 24±1°C; this measurement was performed four times for each of the three heating times (Fig. 3).

Statistical analyses
To calculate shear bond strength, statistical analyses were performed on all data, and descriptive statistics, including the mean, standard deviation (SD), minimum (min), median, and maximum (max), were calculated for each group using the software (SPSS, SPSS Inc., Chicago, IL, USA). Differences among groups were sought using the Kruskal-Wallis H-test, followed by the Mann-Whitney U-test with Bonferroni correction. Differences in temperature at the bases of the ceramic and stainless-steel brackets were compared using the unpaired t-test. Differences in the distribution of ARI scores were analyzed using the chi-squared test with Yates’ correction. P values less than 0.05 were considered to indicate statistical significance for all tests.

RESULTS
Figure 4 shows the time course of temperatures at the adherent surfaces of the bracket bases after heating (300°C). The temperature at which microcapsules began to expand was from 8 s in both brackets. No significant difference in temperature was detected between ceramic and stainless-steel brackets at any time point.

Tables 1 and 2 show the descriptive statistics for the shear bond strength of each group before and after 8 s of heating, and Table 3 shows ARI scoring results. No significant difference in bond strength before heating was observed among 0 wt% and other concentrations of EDA. ARI scores did not differ significantly among concentrations. Bond strengths of EDA containing 20, 30, and 40 wt% microcapsules were significantly less after heating for 8 s than before heating. The bond strength of EDA containing 20 wt% microcapsules decreased to 70% of the bond strength before heating, and those of EDA containing 30 and 40 wt% microcapsules decreased to 30–40% of bond strength before heating.

The median bond strength of 30 wt% EDA was 13.4 MPa in specimens that were not heated. This value

Table 1 Shear bond strengths at each concentration without heating

<table>
<thead>
<tr>
<th>Microcapsule concentration (wt%)</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>Mean</th>
<th>(SD)</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>18.2</td>
<td>11.7</td>
<td>21.8</td>
<td>18.1</td>
<td>(3.4)</td>
<td>–</td>
</tr>
<tr>
<td>10</td>
<td>15.9</td>
<td>12.2</td>
<td>23.0</td>
<td>16.4</td>
<td>(3.2)</td>
<td>n.s.</td>
</tr>
<tr>
<td>20</td>
<td>15.3</td>
<td>10.9</td>
<td>16.4</td>
<td>14.9</td>
<td>(1.8)</td>
<td>n.s.</td>
</tr>
<tr>
<td>30</td>
<td>13.4</td>
<td>11.4</td>
<td>17.2</td>
<td>13.8</td>
<td>(1.9)</td>
<td>n.s.</td>
</tr>
<tr>
<td>40</td>
<td>12.9</td>
<td>10.3</td>
<td>14.6</td>
<td>12.7</td>
<td>(1.3)</td>
<td>n.s.</td>
</tr>
</tbody>
</table>

SD: standard deviation; Min: minimum value; Max: maximum value.
Sig: n.s. indicates no significant difference in bond strength between each concentration and 0% EDA.
Table 2 Shear bond strengths in each concentration after 8 seconds of heating

<table>
<thead>
<tr>
<th>Microcapsule concentration (wt%)</th>
<th>Shear bond strength (MPa)</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>Mean (SD)</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>0</td>
<td>16.7</td>
<td>12.4</td>
<td>19.7</td>
<td>16.4 (2.7)</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>10</td>
<td>14.6</td>
<td>12.0</td>
<td>16.8</td>
<td>14.4 (1.5)</td>
<td>n.s.</td>
<td></td>
</tr>
<tr>
<td>20</td>
<td>11.2</td>
<td>7.7</td>
<td>13.9</td>
<td>10.8 (2.2)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>30</td>
<td>6.5</td>
<td>4.7</td>
<td>7.9</td>
<td>6.3 (1.1)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>4.6</td>
<td>2.4</td>
<td>6.3</td>
<td>4.5 (1.6)</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

SD: standard deviation; Min: minimum value; Max: maximum value. Sig: * indicates that the bond strength of each concentration was significantly (p<0.05) less than that of EDA in the same concentration before heating. n.s. indicates no significant difference in bond strength of the same concentration before and after heating.

Table 3 Adhesive remnant index (ARI) of each adhesive

Heating time (seconds)	Microcapsules concentration (wt%)	Score	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3	
0	30	3 1 2	3 1 2 3	0	1	2	3	0	1	2	3	0	1	2	3	0	1	2	3
8	40	1 2 1	4 1 2 1	5 0 0 3	8 0 0 0	5 3 0 0													

ARI scores: 0, no adhesive left on tooth surface; 1, less than 50% of adhesive left on tooth surface; 2, more than 50% of adhesive left on tooth surface; 3, all adhesive left on the tooth surface. No significant difference was detected among concentrations.

Table 4 Shear bond strengths of each concentration

<table>
<thead>
<tr>
<th>Microcapsule concentration (wt%)</th>
<th>Heating time (seconds)</th>
<th>Shear bond strength (MPa)</th>
<th>Median</th>
<th>Min</th>
<th>Max</th>
<th>Mean (SD)</th>
<th>Sig</th>
</tr>
</thead>
<tbody>
<tr>
<td>30</td>
<td>0</td>
<td>13.4</td>
<td>11.4</td>
<td>17.2</td>
<td>13.8 (1.9)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>6.5</td>
<td>4.7</td>
<td>7.9</td>
<td>6.3 (1.1)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>6.2</td>
<td>2.2</td>
<td>10.6</td>
<td>6.1 (2.9)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.8</td>
<td>2.4</td>
<td>8.4</td>
<td>4.6 (2.3)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td>40</td>
<td>0</td>
<td>12.9</td>
<td>10.3</td>
<td>14.6</td>
<td>12.7 (1.3)</td>
<td>–</td>
<td></td>
</tr>
<tr>
<td></td>
<td>8</td>
<td>4.6</td>
<td>2.4</td>
<td>6.3</td>
<td>4.5 (1.6)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>10</td>
<td>5.4</td>
<td>3.9</td>
<td>6.1</td>
<td>5.2 (0.8)</td>
<td>*</td>
<td></td>
</tr>
<tr>
<td></td>
<td>12</td>
<td>3.7</td>
<td>2.1</td>
<td>5.7</td>
<td>3.8 (1.5)</td>
<td>*</td>
<td></td>
</tr>
</tbody>
</table>

SD: standard deviation; Min: minimum value; Max: maximum value. Sig: * indicates that the bond strength in each concentration was significantly (p<0.05) less than that of unheated specimens.

Table 5 Adhesive remnant index (ARI) of each adhesive

<table>
<thead>
<tr>
<th>Microcapsule concentration (wt%)</th>
<th>Heating time (seconds)</th>
<th>Score</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
<th>0</th>
<th>1</th>
<th>2</th>
<th>3</th>
</tr>
</thead>
<tbody>
<tr>
<td>30*</td>
<td>0</td>
<td>7 1 0 0</td>
<td>8 0 0 0</td>
<td>0 0 3 5</td>
<td>0 0 3 5</td>
<td></td>
</tr>
<tr>
<td>40*</td>
<td>0</td>
<td>7 1 0 0</td>
<td>5 3 0 0</td>
<td>0 1 2 5</td>
<td>0 0 1 7</td>
<td></td>
</tr>
</tbody>
</table>

ARI scores: 0, no adhesive left on tooth surface; 1, less than 50% of adhesive left on tooth surface; 2, more than 50% of adhesive left on tooth surface; 3, all adhesive left on the tooth surface. * indicates significant differences (p<0.05) among heating times.
The bond strength of a bovine tooth would, therefore, be strong enough for use in orthodontic forces. The bond strengths we measured without heating were sufficient to withstand masticatory and orthodontic clinical orthodontic needs, because this strength is significant. Minimum bond strength of 6–8 MPa is adequate for most stainless-steel and ceramic brackets. Reynolds reported mean bond strengths of 14.5 MPa (30 wt%) and 12.1 MPa (40 wt%) for unheated EDA with stainless-steel brackets, and no significant difference in temperature among heating times was found. Thus, the use of an appropriate heating time will likely ensure effective microcapsule expansion; more residue remained on the surface of 30 and 40 wt% EDA specimens heated for 10 and 12 s than on unheated specimens, and failures occurred between the adhesive and bracket base, as reported by Tsuruoka et al.

Several studies have examined temperatures during thermal debonding. Brouns et al. recorded temperatures exceeding 200°C at the base of a ceramic bracket using two types of electrothermal debonding devices without cooling. The thermo-expandable microcapsules (particle sizes: 10–20 µm) used in this study expand four to five times in diameter when heated. The expanding agents they contain are volatile organic compounds, such as isobutene, pentane, petroleum ether, hexane, heptane, low-boiling-point halogenated hydrocarbon solvent, and methylsilane. The capsules are covered with a membrane polymer that consists of thermoplastic resin composed of copolymers, such as vinylidene chloride, acrylic acid ester, and methacrylic acid ester. When the microcapsules are heated above the softening point of the membrane polymer (80°C) and the vapor pressure of the expanding agent rises, they expand 50 to 100 times in volume. In this study, the temperature at the adherent surface of the bracket base reached the softening point at 8 s in ceramic and stainless-steel brackets, and no significant difference in temperature was detected between brackets. Thus, 8 s is an appropriate heating time associated with decreased bond strength in ceramic and stainless-steel brackets, although variation may result from differences in bracket thickness and shape.

Heating at 300°C may nociceptively stimulate the dental pulp. However, the actual temperature on the enamel surface was around 80–110°C, and the temperature increased by 1.8–3.6°C in the pulp wall through the enamel and dentin after heating for 8, 10, and 12 s. Zach and Cohen reported the recovery of 85% of tissue when the pulp temperature rose to 5.5°C above body temperature in macaques. Because this value exceeds the temperature increases we observed, we believe that the nociceptive stimulation would be slight and transient, and that pulp damage will not occur with this method.
CONCLUSIONS
The use of EDA powder with 40 wt% thermo-expandable microcapsules mixed into the polymer powder of 4-META/MMA-TBB resin adhesive for ceramic bracket bonding showed sufficient bond strength before heating and significantly decreased bond strength (approximately 1/3) after heating for 8 s without pulp damage. Thus, we conclude that EDA in this condition is the most useful debacketing bond material for ceramic brackets without causing pulp damage.

ACKNOWLEDGMENTS
This work was supported in part by a Grant-in-Aid for Young Scientists (B) (20791593) from the Ministry of Education, Culture, Sports, Science and Technology, Japan, and a grant from the Dental Research Center, Nihon University School of Dentistry, in 2008.

REFERENCES